首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Polycrystalline samples LaBa2Cu3–xCo x O y (0 x 1.0) were synthesized by solid state reaction method. The structure, phonon vibration, conduction, and spin correlation were investigated by means of X-ray diffraction, infrared spectra, resistivity, and electron spin resonance. It is found that there are orthorhombic–tetragonal and tetragonal–orthorhombic structural transitions with Co doping, and the conduction behavior changes from metallic to semiconducting. With the increase of Co content, the Cu(1)—O(1) phonon mode around 531 cm–1 softens, the Cu(2)—O(2) phonon mode around 657 cm–1 hardens, and the Cu(1)—O(4) mode around 583 cm–1 is nearly unchanged. The Cu2+ spins tend to localize with Co doping. The changes in structure, phonon vibration, and spin correlation with Co doping are analyzed and discussed.  相似文献   

3.
Titania–silica, titania–alumina, and titania–zirconia mixed oxides (1:1 molar ratio) were prepared by a microwave-induced solution combustion synthesis technique. The prepared materials were characterized by thermogravimetry/differential thermal analysis, X-ray diffraction (XRD), Raman spectroscopy, BET surface area, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible diffuse reflectance spectroscopic (UV–Vis DRS), and Fourier transform infrared (FTIR) techniques to assess their physicochemical properties. Their photocatalytic activity for the degradation of phenol in aqueous solution under sunlight was studied. XRD and Raman studies revealed the presence of titania in the form of anatase phase in all the mixed oxides synthesized. The XRD studies further suggested that titania–zirconia contains an additional (Ti,Zr)O2 phase. UV–Vis DRS results reveal that all samples exhibit absorption maxima near visible region. FTIR results revealed the presence of Ti–O–Si linkages in the titania–silica sample, which are responsible for its higher activity in the photocatalytic degradation of phenol under sunlight.  相似文献   

4.
Ceramic Bi1−x Cd x FeO3 (x = 0.0, 0.05, and 0.1) samples were prepared by a citrate-gel method. The as-prepared compounds were calcined at 600 °C for 3 h to obtain nearly single-phase materials. The crystal structure, examined by X-ray powder diffraction (XRD) and Rietveld analysis, confirmed that the samples crystallize in a rhombohedral (space group, R-3c no. 161) structure. Magnetic measurements were carried out on the resultant powders from 300 to ~2.5 K. Magnetic hysteresis loops showed a significant increase in magnetization as a result of Cd doping in BiFeO3.  相似文献   

5.
Various CeO2 M x O y (M x O y  = SiO2, TiO2, ZrO2, and Al2O3) mixed oxides were prepared by microwave induced solution combustion method and analyzed by different complimentary techniques, namely, X-ray diffraction (XRD), Raman spectroscopic (RS), UVVis diffuse reflectance spectroscopy (UV-DRS), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG-DTA), and BET surface area. XRD analyses revealed that CeO2 SiO2 and CeO2 TiO2 mixed oxides are in slightly amorphous form and exhibit only broad diffraction lines due to cubic fluorite structure of ceria. XRD lines due to the formation of cubic Ce0.5Zr0.5O2 were observed in the case of CeO2 ZrO2 sample. RS results suggested defective structure of the mixed oxides resulting in the formation of oxygen vacancies. The UV-DRS measurements provided valid information about Ce4+ ← O2− and Ce3+ ← O2− charge transfer transitions. XPS studies revealed the presence of cerium in both Ce3+ and Ce4+ oxidation states. The ceria–zirconia combination exhibited better oxygen storage capacity (OSC) and CO oxidation activity when compared to other samples. The significance of present synthesis method lays mostly on its simplicity, flexibility, and the easy control of different experimental factors.  相似文献   

6.
High-quality and various doped Bi2Sr2−x La x CuO6+δ (x=0–0.90) single crystals were obtained by floating-zone method. Analysis of the thermal behavior indicated an incongruent melt for all the doped compounds. The segregation coefficient of La related to Sr was estimated to be ∼1.02. Chemical compositions including the La doping in the crystals were accurately determined to study the effect of doping on the structural, chemical and superconducting property of the compounds. Raman spectra were performed to show the high-frequency modes 627 cm−1 softened with increasing the doping level of La. Implications of the doping effect on crystals for understanding the superconductivity are discussed.  相似文献   

7.
Ferrites with the general formula Mg1+xMnxFe2–2xO4(where x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were prepared by the standard ceramic technique and studied by means of X-ray diffraction, magnetization, a.c. susceptibility and dielectric constant measurements. The X-ray analysis confirmed the single-phase formation of the samples. The lattice parameter is found to increase up to x = 0.3 and thereafter it decreases as x increases. The cation distribution has been studied by X-ray analysis and magnetization. Magnetization results exhibit collinear ferrimagnetic structure for x 0.3 and thereafter structure changes into non-collinear for x > 0.3. Curie temperature (TC) obtained from a.c. susceptibility data decreases with increasing x. The dielectric constant (), loss tangent (tan ) show strong frequency dependence.  相似文献   

8.
X-ray diffraction, IR spectroscopy, particle-size analysis, and chemical analysis are used to elucidate the general mechanisms of the formation of nanoparticulate molybdenum-dioxide-modified Al2 − x Fe x O3 and Fe2 − y Al y O3 solid solutions prepared via heat treatment of ammonium hydroxycarbonate complexes, (NH4)2Al2Fe(OH)5(CO3) · nH2O. The addition of molybdenum dioxide (within 0.005 mol %) is shown to enhance the polishing performance of the oxides for final polishing of nonferrous metals and alloys (copper and brass) by a factor of 6–7 relative to unmodified aluminum iron oxides, which is attributable to the increased chemical activity of the abrasive material. The surface roughness value R a achieved is below 0.005 μm.  相似文献   

9.
New NASICON type materials of composition, Li3−2x Al2−x Sb x (PO4)3 (x = 0·6 to 1·4), have been prepared and characterized by powder XRD and IR. D.C. conductivities were measured in the temperature range 300–573 K by a two-probe method. Impedance studies were carried out in the frequency region 102−106 Hz as a function of temperature (300–573 K). An Arrhenius behaviour is observed for all compositions by d.c. conductivity and the Cole-Cole plots obtained from impedance data do not show any spikes on the lower frequency side indicating negligible electrode effects. A maximum conductivity of 4·5 × 10−6 S cm−1 at 573 K was obtained for x = 0·8 of the Li3−2x Al2−x Sb x (PO4)3 system.  相似文献   

10.
The structural and magnetic phase transitions and magnetoresistance of the diluted magnetic semiconductors Cd1 − x Mn x GeAs2 and Cd1 − x Mn x GeP2 have been studied at high hydrostatic pressures, up to 7 GPa. The normal and anomalous Hall coefficients of the samples have been determined graphically from experimental data.  相似文献   

11.
The optical properties of sodium-deficient -Na x V2O5 (0.85 x 1.00) single crystals are analyzed using ellipsometry, and infrared reflectivity techniques. In sodium deficient samples, the optical absorption peak associated to the fundamental electronic gap develops in the middle of the pure -NaV2O5 gap at 0.44 eV, and the material remains insulating up to the maximal achieved hole concentration of about 15%. Nonmetallic behavior under hole doping provoked reinterpretation of the -NaV2O5 optical spectra. We argue that the absorption peak at about 0.9 eV corresponds to the photoionization energy of a large polaron.  相似文献   

12.
The data of M?ssbauer emission spectroscopy on 67Cu(67Zn) and 67Ga(67Zn) isotopes show that holes appearing as a result of the Sr2+ substitution for La3+ in the La2 − x Sr x CuO4 crystal lattice are localized predominantly at oxygen atoms occurring in the same atomic plane as the copper atoms. In contrast, electrons appearing as a result of the Ce4+ substitution for Nd3+ in the Nd2 − x Ce x CuO4 crystal lattice are localized in the copper sublattice. These results are consistent with the model assuming that a mechanism responsible for the high-temperature superconductivity in La2 − x Sr x CuO4 and Nd2 − x Ce x CuO4 crystal lattices is based on the interaction of electrons with two-site two-electron centers possessing negative correlation energies (negative-U centers).  相似文献   

13.
Compositions having general formula Ni0.6Zn0.4Nd y Fe2−y O4 (where y = 0, 0.01, 0.02 and 0.03) were prepared by oxalate co-precipitation method from high purity sulphates. The samples were characterized by XRD, IR and SEM techniques. X-ray diffraction measurements confirmed the formation of single phase cubic spinel structure. Lattice constant increases with rise in Nd3+ content and obeys Vegard’s law. Crystallite size of the samples lies in the range 29.98–31.15 nm. The IR spectra shows two strong absorption bands in the frequency range 400–600 cm−1. Further, it shows that Nd3+ occupies B-site. SEM studies show that the grain size of the samples decreases with increase in Nd3+ content. Saturation magnetization of Nd3+ substituted Ni–Zn ferrites is higher than unsubstituted ferrite.  相似文献   

14.
Muon spin rotation ( +SR) measurement provides clear evidence of the antiferromagnetic order of Cu moments below 35 K for La2–x Ba x CuO4 and below 15 K for La2–x Sr x CuO4 in the narrow range ofx where the high-T c superconductivity (SC) is suppressed remarkably. The results suggest that the change of the electronic state coupled with the lattice instability is relevant to the local suppression of SC and freezing of spin fluctuations of the Cu moment.  相似文献   

15.
The flux pinning energy and magnetic properties of Bi1.64−x Pb0.36Cd x Sr2Ca2Cu3O y (BPCSCCO) with x=0.0, 0.02, 0.04 and 0.06 were studied. A series of Bi-2223 superconductor samples with a nominal composition of BPCSCCO was synthesized and the effect of Cd substitution for Bi was investigated. As a result, Cd addition has been found to improve the superconducting properties of the Bi-Pb-Sr-Ca-Cu-O system. The effects of the annealing time and the amount of Cd doping on the structure, AC magnetic susceptibility, ρT curves and flux pinning energy were investigated. Also, for all samples the relation between the current and voltage in the mixed state was found to follow the model relationship V=α I β . The maximum value of β is 22.30, which is obtained for the sample with an annealing time of 270 h and a Cd content of 0.04.  相似文献   

16.
Ceramic powders of (Nd x Gd1−x )2Zr2O7 (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) were synthesized by chemical-coprecipitation followed by calcination method, and were then pressureless-sintered at 1,600 °C for 10 h in air. Phase constituents and morphologies of the synthesized powders and sintered ceramics were identified by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A high-temperature dilatometer and a laser-flash method were used to analyze the thermal expansion coefficient and thermal diffusion coefficient of different ceramics from room temperature up to 1,400 °C. Thermal conductivity was calculated from thermal diffusivity, density, and specific heat. (Nd x Gd1−x )2Zr2O7 (0.1 ≤ x ≤ 1.0) ceramics are with a pyrochlore-type structure; however, pure Gd2Zr2O7 exhibits a defective fluorite-type structure. The average linear thermal expansion coefficients of different (Nd x Gd1−x )2Zr2O7 ceramics decrease with increasing the value of x from 0 to 1.0 in the temperature range of 25–1,400 °C. The thermal conductivities of (Nd x Gd1−x )2Zr2O7 ceramics are located within the range of 1.33 to 2.04 W m−1 K−1 from room temperature to 1,400 °C.  相似文献   

17.
The influence of Sn doping on superconductivity in the Bi-based 2212 phase is studied in this paper. For the samples R–T relations and magnetic hysteresis loops were measured. X-ray powder diffraction analysis was also performed. For Bi1.75Pb0.25Sr2CaCu2.3–x Sn x O y , the experimental results show that by adding the proper amount of Sn the superconductivity of the samples can be improved. As x = 0.15, the critical temperature T c, the critical current density J c, and the magnetic pinning force density F reach a maximum. At T = 11 K, the critical state parameters H c1, H c2, , , and are calculated and compared with the results reported by other researchers. The experimental results also show that the Sn doping is able to speed up the growth of the 2223 phase. In brief, Sn doping is an effective way of improving the superconductivity in Bi-based superconductors.  相似文献   

18.
A series of Ce1−x Fe x O2 (0 < x ≤ 0.5) catalysts were prepared by the co-precipitation method, and their catalytic performances were investigated for the total oxidation of CO and CH4 as model reactions. X-ray diffraction (XRD) and Raman spectroscopy results show that Ce1−x Fe x O2−δ solid solutions are formed with x ≤ 0.2. Ce0.9Fe0.1O2 solid solution presents superior catalytic performance for CH4 and CO oxidation, while Ce1−x Fe x O2 with x > 0.2 shows less active for CO and CH4 oxidation. The results of H2-temperature programmed reduction (H2-TPR), CH4-temperature programmed surface reaction (CH4-TPSR) and CO-TPSR reveal that, the surface oxygen of catalyst is relevant to CO oxidation, which was promoted by the oxygen vacancies formed in Ce–Fe–O solid solution, while the easier lattice oxygen migration property and the favorable reducibility of the catalysts is responsible for the promoted catalytic performance for CH4 oxidation.  相似文献   

19.
The co-doped compounds of Y1−x Ca x Ba2Cu3−x Al x O z , with x from 0.1 to 0.4, were synthesized through a solid-state reaction method. Structural and superconducting properties have been investigated by X-ray diffraction, Rietveld refinement, and DC magnetization measurement. The lattice constant a decreases while b increases with the addition of x. The difference between a and b diminishes gradually. Careful study of the crystalline structure shows that the critical temperature (T c ) changes monotonically with some local structural parameters, such as the difference between Ba and Cu(2) atoms’ Z coordinates, the bond length of Cu(2)–O(4), and the bond angle of Cu(2)–O(2)–Cu(2), which are all closely related to the interaction between the perovskite block and the rock salt block in the unit cell. The results indicated that the influence of the crystalline structure on superconductivity is important and independent of the carrier concentration.  相似文献   

20.
The solubility of Nd at the Ba sites and the superconductivity of YBa2–x Nd x Cu3O y were investigated by X-ray powder diffraction and measurements of the electrical resistance and ac susceptibility. The single Re123 phase was obtained for x0.30. The onset transition temperature is insensitive to the Nd content x in the region of x0.40. All are higher than 95 K. The zero resistance transition temperatures , however, exhibits two-step variation with the increase of x. For x0.25, are all above 92 K. The highest of 94 K was obtained for x=0.25. For x0.3 drops sharply to about 84 K. Finally falls to 30 K and is below 10 K for x=0.5. The two-step variation of T c might be an indication of the existence of two trap levels for holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号