首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(butyl acrylate)/poly(vinyl acetate‐co‐methyl methacrylate) PBA/P(VAc‐co‐MMA) core–shell rubber particles with various shell compositions, i.e., VAc/MMA weight ratios, were used to toughen unsaturated polyester. The morphology and surface‐free energy of the rubber particles were determined by transmission electron microscopy (TEM) and contact angle measurements, respectively. The effect of shell structure on the dispersion state of rubber particles inside the unsaturated polyester resin was studied by scanning electron microscopy and TEM. Increasing MMA units in the shell changed the particle dispersion state from small agglomerates or globally well‐dispersed particles to large aggregates in the cured‐resin matrix. For the blends that contain 5 wt% rubber, the highest un‐notched impact toughness, stress‐intensity factor (KIC), and fracture energy (GIC) were observed for the blend containing PVAc shell particles. The results showed that by increasing the particle level from 5 to 10 wt%, the highest KIC and GIC values were obtained for the blend containing rubber particles with VAc/MMA (80/20 wt/wt) copolymer shell. The crack‐tip damage zone in the neat and rubber‐modified unsaturated polyester resins was observed by means of transmission optical microscopy. In addition, using PVAc shell particles exhibited a minimum reduction in the volume shrinkage and tensile properties of the rubber‐modified resin. POLYM. ENG. SCI., 52:1928–1937, 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
Silica nanoparticles (SN) and epoxidized natural rubber (ENR) were used as binary component fillers in toughening diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine. For a single component filler system, the addition of ENR resulted in significantly improved fracture toughness (KIC) but reduction of glass transition temperature (Tg) and modulus of epoxy resins. On the other hand, the addition of SN resulted in a modest increase in toughness and Tg but significant improvement in modulus. Combining and balancing both fillers in hybrid ENR/SN/epoxy systems exhibited improvements in the Young’s modulus and Tg, and most importantly the KIC, which can be explained by synergistic impact from the inherent characteristics associated with each filler. The highest KIC was achieved with addition of small amounts of SN (5 wt.%) to the epoxy containing 5–7.5 wt.% ENR, where the KIC was distinctly higher than with the epoxy containing ENR alone at the same total filler content. Evidence through scanning electron microscopy (SEM) and transmission optical microscopy (TOM) revealed that cavitation of rubber particles with matrix shear yielding and particle debonding with subsequent void growth of silica nanoparticles were the main toughening mechanisms for the toughness improvements for epoxy. The fracture toughness enhancement for hybrid nanocomposites involved an increase in damage zone size in epoxy matrix due to the presence of ENR and SN, which led to dissipating more energy near the crack-tip region.  相似文献   

3.
Phenolic epoxy resin was toughened by carboxyl-randomized butadiene acrylonitrile copolymer (CRBN) for use as composite matrix. By adding different parts of butadiene acrylonitrile copolymer (BN-26, without carboxyl contained) to CRBN, different sizes of rubber domains and different numbers of chemical bondings between the resin matrix and the rubber phase were obtained. It is found that small rubber particles (less than 0.1 μm) are cavitated during the crack development. The interaction between secondary crack zones caused by the cavitation makes the fracture toughness KIC of the materials high; by comparison, a local stress-whitened zone is produced in the material with large rubber particles (more than 0.1 μm) when it is subjected to tensile stress. In this case, the flexure strength σf of the material is great. Using ultrasection and TEM techniques, the stress-whitened zone was shown to be caused by the special multiple-phase structure of the material, in which many caves and “macrocrazes” coexist.  相似文献   

4.
The influence of silane (bis[3‐triethoxysilylpropyl] tetrasulfide) coupling agent on the properties of ethylene‐propylene‐diene monomer rubber (EPDM)/mica composites was studied. Both EPDM/mica composites with silane and those without silane were compounded by using a two‐roll mill at various filler loadings (i.e., 100/0, 100/10, 100/30, 100/50, 100/70). The tensile and thermal properties as well as the fracture surfaces of the composites were investigated by using an Instron Universal Testing Machine, a thermal gravimetric analyzer, and a field emission scanning electron microscope. The results indicated that the optimum cure time (t90) and scorch time (ts2) values were shorter, whereas the maximum torque (MH) value was slightly higher, for EPDM/mica composites with silane compared to those without silane. The tensile properties, modulus at 100% elongation, and modulus at 300% elongation increased for the composites made with silane, and the optimum filler loading for those properties was 50 parts by weight per hundred parts of rubber. In addition, thermal stability and swelling ratio for both composites improved with increased filler loading. However, the composites with silane showed better thermal stability and swelling ratio because of stronger linkage at the rubber‐filler boundary, which promoted filler dispersion. J. VINYL ADDIT. TECHNOL., 20:116–121, 2014. © 2014 Society of Plastics Engineers  相似文献   

5.
Herein, the influence of corundum filler types and contents on the morphological, thermal, and mechanical properties of epoxy nanocomposites tailored for applications as chemical anchoring and bonding systems is investigated. Up to 65 wt% corundum particles with aspect ratios (AR) varying between 1 and 70, average particle sizes ranging from 500 nm to 48 µm, and nanoplatelet thickness varying from 40 to 300 nm, are uniformly dispersed in amine‐cured epoxy resins. At both 25 and 50 wt% filler content, the properties of corundum/epoxy composites are far superior to those of the corresponding benchmark epoxy composites containing a conventional filler such as cement, talcum, or sand. The incorporation of corundum nanoplatelets with AR of 50, length of 2 µm, and thickness of 40 nm, significantly improves Young's modulus (3.5–9.8 GPa) and fracture toughness KIc (0.83–1.24 MPa of epoxy nanocomposites at the expense of tensile strength (72–49 MPa). The pull‐out values of the corresponding chemical anchoring systems substantially improve with decreasing sub‐micrometer corundum particle sizes and correlate with tensile strength of the corundum/epoxy nanocomposites, but are much less dependent on corundum particle morphologies, filler aspect ratio, and Young's modulus of the corundum/epoxy composite.  相似文献   

6.
Curing characteristics, tensile properties, morphological studies of tensile fractured surfaces using scanning electron microscopy (SEM), and the extent of rubber filler interactions of rattan‐powder‐filled natural rubber (NR) composites were investigated as a function of filler loading and silane coupling agent (CA). NR composites were prepared by the incorporation of rattan powder at filler loading range of 0–30 phr into a NR matrix with a laboratory size two roll mill. The results indicate that in the presence of silane CA, scorch time (ts2), and cure time (t90) of rattan‐powder‐filled NR composites were shorten, while, maximum torque (MH) increased compared with NR composites without silane CA. Tensile strength and tensile modulus of composites were enhanced whereas elongation at break reduced in the presence of silane CA mainly due to increase in rubber‐filler interaction. It is proven by SEM studies that the bonding between the filler and rubber matrix has improved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Epoxy composites filled with both graphene oxide (GO) and diglycidyl ether of bisphenol-A functionalized GO (DGEBA–f–GO) sheets were prepared at different filler loading levels. The correlations between surface modification, morphology, dispersion/exfoliation and interfacial interaction of sheets and the corresponding mechanical and thermal properties of the composites were systematically investigated. The surface functionalization of DGEBA layer was found to effectively improve the compatibility and dispersion of GO sheets in epoxy matrix. The tensile test indicated that the DGEBA–f–GO/epoxy composites showed higher tensile modulus and strength than either the neat epoxy or the GO/epoxy composites. For epoxy composite with 0.25 wt% DGEBA–f–GO, the tensile modulus and strength increased from 3.15 ± 0.11 to 3.56 ± 0.08 GPa (∼13%) and 52.98 ± 5.82 to 92.94 ± 5.03 MPa (∼75%), respectively, compared to the neat epoxy resin. Furthermore, enhanced quasi-static fracture toughness (KIC) was measured in case of the surface functionalization. The GO and DGEBA–f–GO at 0.25 wt% loading produced ∼26% and ∼41% improvements in KIC values of epoxy composites, respectively. Fracture surface analysis revealed improved interfacial interaction between DGEBA–f–GO and matrix. Moreover, increased glass transition temperature and thermal stability of the DGEBA–f–GO/epoxy composites were also observed in the dynamic mechanical properties and thermo-gravimetric analysis compared to those of the GO/epoxy composites.  相似文献   

8.
Toughening of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin with liquid carboxyl-terminated butadiene acrylonitrile (CTBN) copolymer has been investigated. For this purpose six blend samples were prepared by mixing DGEBA with different concentrations of CTBN from 0 to 25 phr with an increment of 5 phr. The samples were cured with dicyandiamide curing agent accelerated by Monuron. The reactions between oxirane groups of DGEBA and carboxyl groups of CTBN were followed by Fourier-transform infrared (FTIR) spectroscopy. Tensile, impact, fracture toughness and dynamic mechanical analysis of neat as well as the modified epoxies have been studied to observe the effect of CTBN modification. The tensile strength of the blend systems increased by 26 % when 5 phr CTBN was added, and it remained almost unchanged up to 15 phr of CTBN. The elongation-at-break and Izod notched impact strength increased significantly, whereas tensile modulus decreased gradually upon the addition of CTBN. The maximum toughness of the prepared samples was achieved at optimum concentration of 15 phr of CTBN, whereas the fracture toughness (K IC) remained stable for all blend compositions of more than 10 phr of CTBN. The glass transition temperature (T g) of the epoxy resin significantly increased (11.3 °C) upon the inclusion of 25 phr of CTBN. Fractured surfaces of tensile test samples have been studied by scanning electron microscopic analysis. This latter test showed a two-phase morphology where the rubber particles were distributed in the epoxy resin with a tendency towards co-continuous phase upon the inclusion of 25 phr of CTBN.  相似文献   

9.
This is probably the first report on developing nitrile butadiene rubber (NBR) composites with enhanced performance s via lignin bridged epoxy resin in the rubber matrix. NBR/lignin masterbatch has been prepared through latex‐compounding method, and then epoxy resin (F51) was added in the NBR/lignin compounds by the melt compounding method. Lignin‐epoxy resin networks were synthesized in situ during the curing process of rubber compounds through epoxide?hydroxyl reactions. Compared with lignin filler, lignin‐F51 networks showed an improved oil resistance ability and led to increased mechanical properties, crosslinking density, and thermal stability of the rubber composites. This method provides a new insight into the fabrication of novel interpenetrating polymer networks in rubber composites and enlarges the potential applications of lignin in high performance rubber composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42922.  相似文献   

10.
《国际聚合物材料杂志》2012,61(3-4):241-254
Abstract

The paper reports on the curing characteristics and mechanical properties of oil palm wood flour (OPWF) reinforced epoxidized natural rubber (ENR) composites. Three sizes of OPWF at different filler loadings were compounded with a two roll mill. The cure (t 90) and scorch times of all filler size decrease with increasing OPWF loading. Increasing OPWF loading in ENR compound resulted in reduction of tensile strength and elongation at break but increased tensile modulus, tear strength and hardness. The composites filled with smaller OPWF size showed higher tensile strength, tensile modulus and tear strength. Scanning electron microscope (SEM) micrographs showed that at lower filler loading the fracture of composites occurred mainly due to the breakage of fibre with minimum pull-out of fibres from the matrix. However as the filler loading is increased, the fibre pull-out became very prominent due to the lack of adhesion between fibre and rubber matrix.  相似文献   

11.
Natural rubber composites were prepared by the incorporation of palm ash at different loadings into a natural rubber matrix with a laboratory‐size two‐roll mill (160 × 320 mm2) maintained at 70 ± 5°C in accordance with the method described by ASTM D 3184–89. A coupling agent, maleated natural rubber (MANR), was used to improve the mechanical properties of the natural rubber composites. The results indicated that the scorch time and cure time decreased with increasing filler loading, whereas the maximum torque exhibited an increasing trend. Increasing the palm ash loading increased the tensile modulus, but the tensile strength, fatigue life, and elongation at break decreased. The rubber–filler interactions of the composites decreased with increasing filler loading. Scanning electron microscopy of the tensile fracture surfaces of the composites and rubber–filler interaction studies showed that the presence of MANR enhanced the interfacial interaction of the palm ash filler and natural rubber matrix. The presence of MANR also enhanced the tensile properties and fatigue life of palm‐ash‐filled natural rubber composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The effect of dispersion state of graphene on mechanical properties of graphene/epoxy composites was investigated. The graphene sheets were exfoliated from graphite oxide (GO) via thermal reduction (thermally reduced GO, RGO). Different dispersions of RGO sheets were prepared with and without ball mill mixing. It was found that the composites with highly dispersed RGO showed higher glass transition temperature (Tg) and strength than those with poorly dispersed RGO, although no significant differences in both the tensile and flexural moduli are caused by the different dispersion levels. In particular, the Tg was increased by nearly 11 °C with the addition of 0.2 wt.% well dispersed RGO to epoxy. As expected, the highly dispersed RGO also produced one or two orders of magnitude higher electrical conductivity than the corresponding poorly dispersed RGO. Furthermore, an improved quasi-static fracture toughness (KIC) was measured in the case of good dispersion. The poorly and highly dispersed RGO at 0.2 wt.% loading resulted in about 24% and 52% improvement in KIC of cured epoxy thermosets, respectively. RGO sheets were observed to bridge the micro-crack and debond/delaminate during fracture process due to the poor filler/matrix and filler/filler interface, which should be the key elements of the toughening effect.  相似文献   

13.
Epoxies toughened with two reactive liquid rubbers, an epoxy-terminated butadiene acrylonitrile rubber (ETBN) and an amino-terminated butadiene acrylonitrile rubber (ATBN), were prepared and studied in terms of their structure property relationships. A two-phase structure was formed, consisting of spherical rubber particles dispersed in an epoxy matrix. A broad distribution of rubber particles was observed in all the materials with most of the particles ranging in size from 1 to 4 μm, but some particles exceeding 20 μm were also found. Impact strength, plane strain fracture toughness (KIC), and fracture energy (GIC) were increased, while Young's modulus and yield strength decreased slightly with increasing rubber content and volume fraction of the dispersed phase. Both GIC and KIC were found to increase with increasing apparent molecular weight between crosslinks and decreasing yield strength. The increased size of the plastic zone at the crack tip associated with decreasing yield strength could be the cause of the increased toughness. An ATBN-toughened system containing the greatest amount of epoxy sub-inclusion in the rubbery phase demonstrated the best fracture toughness in this series. In the present systems, rubber-enhanced shear deformation of the matrix is considered to be the major toughening mechanism. Curing conditions and the miscibility between the liquid rubber and the epoxy resin determine the phase morphology of the resulting two-phase systems. Kerner's equation successfully describes the modulus dependence on volume fraction for the two-phase epoxy materials.  相似文献   

14.
Amine‐terminated poly(arylene ether sulfone)–carboxylic‐terminated butadiene‐acrylonitrile–poly(arylene ether sulfone) (PES‐CTBN‐PES) triblock copolymers with controlled molecular weights of 15,000 (15K) or 20,000 (20K) g/mol were synthesized from amine‐terminated PES oligomer and commercial CTBN rubber (CTBN 1300x13). The copolymers were utilized to modify a diglycidyl ether of bisphenol A epoxy resin by varying the loading from 5 to 40 wt %. The epoxy resins were cured with 4,4′‐diaminodiphenylsulfone and subjected to tests for thermal properties, plane strain fracture toughness (KIC), flexural properties, and solvent resistance measurements. The fracture surfaces were analyzed with SEM to elucidate the toughening mechanism. The properties of copolymer‐toughened epoxy resins were compared to those of samples modified by PES/CTBN blends, PES oligomer, or CTBN. The PES‐CTBN‐PES copolymer (20K) showed a KIC of 2.33 MPa m0.5 at 40 wt % loading while maintaining good flexural properties and chemical resistance. However, the epoxy resin modified with a CTBN/8K PES blend (2:1) exhibited lower KIC (1.82 MPa m0.5), lower flexural properties, and poorer thermal properties and solvent resistance compared to the 20K PES‐CTBN‐PES copolymer‐toughened samples. The high fracture toughness with the PES‐CTBN‐PES copolymer is believed to be due to the ductile fracture of the continuous PES‐rich phases, as well as the cavitation of the rubber‐rich phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1556–1565, 2002; DOI 10.1002/app.10390  相似文献   

15.
A novel kind of bisphenol-type epoxy resin with a vinyl side-chain was developed and its miscibility behavior with liquid nitrile-butadiene rubber (NBR) was investigated. The diglycidyl ether of bisphenol propylene (DGEBP) was prepared by the condensation of phenol with acrolein in the presence of an acid catalyst and the subsequent epoxidization with epichlorohydrin (ECH). The structures of the bisphenol and corresponding epoxy resin were characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectral analyses and the epoxy value was determined to be 0.34 mol/100 g by titration. The mixture of DGEBP with the liquid NBR containing diglycidyl ether of bisphenol acetone (DGEBA) was prepared and cured with diaminodiphenylmethane (DDM). The miscibility and morphology of the mixture system were studied by dynamic mechanical thermal analysis (DMTA) and transmission electron microscopy (TEM), respectively. The cured mixture of DGEBP/NBR/DDM exhibited good miscibility and, therefore, no separation, along with a transparent appearance at rubber contents of 10 wt% and 30 wt%. For cured DGEBP/DGEBA/NBR/DDM systems at 20 wt% rubber content, the dispersed rubber phase and rubber particles were not observed by DMTA or TEM at DGEBP content above 40 wt%. The DMTA plot showed a single peak related to the glass transition temperature (T g) which decreased with increasing DGEBP content. The appearance of the system varied from transparent to opaque and the rubber separated from the epoxy matrix to form two phases when the DGEBP content decreased. The T g values of the rubber- and epoxy-rich phases were strongly dependent on the DGEBP content in the mixed system. The miscibility of epoxy resin with liquid NBR can be altered by varying the ratio of DGEBP to DGEBA.  相似文献   

16.
Polyester polyurethanes derived from poly(ethyleneterephthalate) (PET) glycolysates were blended with epoxy to form graft‐interpenetrating networks (IPNs) with improved mechanical properties. Microwave‐assisted glycolytic depolymerization of PET was performed in the presence of polyethylene glycols of different molecular weights (600–1500). The resultant hydroxyl terminated polyester was used for synthesis of polyurethane prepolymer which was subsequently reacted with epoxy resin to generate grafted structures. The epoxy‐polyurethane blend was cured with triethylene tetramine under ambient conditions to result in graft IPNs. Blending resulted in an improvement in the mechanical properties, the extent of which was found to be dependant both on the amount as well as molecular weight of PET‐based polyurethane employed. Maximum improvement was observed in epoxy blends prepared with polyurethane (PU1000) at a loading of 10% w/w which resulted in 61% increase in tensile strength and 212% increase in impact strength. The extent of toughening was quantified by flexural studies under single edge notch bending (SENB) mode. In comparison to the unmodified epoxy, the Mode I fracture toughness (KIC) and fracture energy (GIC) increased by ~45% and ~184%, respectively. The underlying toughening mechanisms were identified by fractographic analysis, which generated evidence of rubber cavitation, microcracking, and crack path deflection. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40490.  相似文献   

17.
A new type of elastomeric composite containing natural rubber (NR) and graphitic carbon nitride (g-C3N4) has been successfully prepared with the reinforced property. The reinforcing effect of g-C3N4 in NR composites was examined by cure, mechanical, morphological, and swelling studies. Besides, epoxidized NR with 50-mol % epoxy level (ENR-50) was used as a compatibilizer to enhance the hydrophilic g-C3N4 filler capacity for hydrophobic NR composites. At the same filler load level, the mechanical properties of NR/g-C3N4 composites, such as tensile strength and tensile modulus, were consistently increased with increased ENR-50 content. To note, the ENR compatibilized composites have shown better-reinforced performance, which has been attributed to the hydrogen bonding interactions between the uncondensed amine groups in g-C3N4 and the polar groups in ENR. We believe that these newly prepared NR composites based on g-C3N4 as nonblack filler and ENR-50 as compatibilizer can find potential applications in modern day rubber research. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48136.  相似文献   

18.
Comparative studies on the effect of aluminium particles in natural rubber (NR) and ethylene-propylene-diene terpolymer (EPDM) were conducted. The incorporation of aluminium particles in NR or EPDM composites increased the cure time, t 90, and scorch time, t S2 . At a fixed filler loading, EPDM composites exhibited longer t 90 and t S2 than NR composites. The results also indicate that the maximum torque, M H of aluminium filled NR and EPDM composites increase with increasing filler loading. For tensile properties, EPDM composites show lower tensile properties than NR composites. Thermogravimetric analysis (TGA) results show that aluminium filled EPDM composites have better thermal stability than aluminium filled NR composites.

The results for electrical properties indicate that the electrical properties of aluminium filled NR and EPDM composites increase with increase in filler loading.  相似文献   

19.
The effects of additives such as boron trifluride-monoethylene amine (BF3MEA) and fumed silica in the TGDDM/DDS epoxy formulations on the curing properties, resin contents, and mechanical properties of their graphite/epoxy (Gr/Ep) composites were investigated. The addition of BF3MEA increased the viscosity of resin as well as the resin contents of cured laminates because of its catalytic effect. Although the fumed silica was considered a thickening agent, it also acted like a co-catalyst with BF3MEA. As the resin content of cured laminates was increased, the excess resin was likely to accumulate in the interlaminar region, which increased the interlaminar shear strength but decreased the flexure strength as well as the interlaminar fracture toughness value, GIC.  相似文献   

20.
A liquid diglycidyl ether of bisphenol A (DGEBA) epoxy resin is blended in various proportions with amine‐terminated polyoxypropylene (POPTA) and cured using an aliphatic diamine hardener. The degree of crosslinking is varied by altering the ratio of diamine to epoxy molecules in the blend. The mixture undergoes almost complete phase separation during cure, forming spherical elastomer particles at POPTA concentrations up to 20 wt %, and a more co‐continuous morphology at 25 wt %. In particulate blends, the highest toughness is achieved with nonstoichiometric amine‐to‐epoxy ratios, which produce low degrees of crosslinking in the resin phase. In these blends, the correlation between GIC and plateau modulus (above the resin Tg), over a wide range of amine‐to‐epoxy ratios, confirms the importance of resin ductility in determining the fracture resistance of rubber‐modified thermosets. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 427–434, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号