首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long‐carbon‐fiber‐reinforced polyamide‐6/nickel powder composites were designed as electromagnetic interference (EMI) shielding materials and then were prepared through the joint processing of melt blending and thermoplastic pultrusion. The obtained composites show high conductivity and permittivity as well as a high dielectric loss with co‐addition of carbon fiber and nickel powders, which makes the resulting composites a higher level of shielding effectiveness due to the combination of conductive and magnetic fillers. The composites are capable of shielding mainly through absorption rather than reflection. On the other hand, the composites achieved significant improvements in tensile, flexural, and impact strength due to the superiority of the long‐carbon‐fiber‐reinforced technique. The residual fiber length in the injection‐molded specimens is greatly superior to the critical one predicted by the Kelly–Tyson model. This takes full advantage of the strength of the reinforcing fiber itself, thus leading to a promising reinforcement effect. The enhancement of impact toughness is due to the energy dissipation by fiber fracture as a result of long fiber effect. The morphologic investigation indicated that the fiber fracture and fiber pullout concurred on the impact and tensile fracture surfaces, and the former preceded the latter. Highlighted with both good EMI shielding properties and excellent mechanical performance, the composites designed by this work exhibit potential applications for the automotive, electronic, aerospace, and military industries. POLYM. COMPOS., 37:2705–2718, 2016. © 2015 Society of Plastics Engineers  相似文献   

2.
综述了近几年来长玻璃纤维(LGF)增强热塑性复合材料的发展现状,重点以聚丙烯为例,介绍了纤维含量、分布及纤维与基体之间相容性等因素对LGF增强热塑性复合材料性能的影响;重点以尼龙6为例,对LGF增强热塑性复合材料的阻燃改性及老化性能的相关研究进行了阐述。最后对未来LGF增强热塑性复合材料改性及抗老化研究的重点和方向进行了展望。  相似文献   

3.
Carbon fiber/ABS composites with different acrylonitrile, butadiene, and styrene components were produced via extrusion/injection and long fiber thermoplastic (LFT)/injection molding processes, respectively. The effect of the components on fiber length distribution, tensile, flexural, impact, and dynamic mechanical properties of the composites was investigated. The properties of carbon fiber/ABS composites produced using 12 mm-long LFT pellets were markedly higher than those produced using extruded pellets made with 12 mm-long chopped carbon fibers. Uses of LFT pellets were preferable to enhancing the mechanical properties of carbon fiber/ABS composites. The tensile, flexural, and dynamic mechanical properties were increased in order of ABS750sw > ABS720 ≥ ABS780 > ABS740, whereas the impact strength was increased in order of ABS740 > ABS780 > ABS720 ≈ ABS750sw. Less carbon fiber damages and less carbon fiber length degradation upon LFT processing resulted in longer fiber length distribution and higher fiber aspect ratio in the composites with LFT pellets, indicating a beneficial reinforcing effect, which was responsible for the increased mechanical properties of ABS composites, particularly with ABS750sw. The results were agreed with each other, significantly depending on the A, B, and S components, being supported by fiber length distribution, fiber aspect ratio, and fracture surfaces.  相似文献   

4.
长玻璃纤维增强热塑性塑料的开发应用   总被引:1,自引:0,他引:1  
通过对玻璃纤维(GF)增强聚丙烯(PP)改性、长GF的表面浸润与分散性的研究,开发出与PP相容、充分适应长纤维增强热塑性塑料(LFT)加工要求的专用无捻粗纱,并通过长纤维造粒技术和注塑工艺制备性能优良的制品.其力学性能明显优于短GF增强PP。最后介绍了长GF增强热塑性塑料的应用前景。  相似文献   

5.
The hot water resistance of three kinds of short glass fiber or glass bead‐reinforced plastics [polyphenyleneether (PPE), polyphenylenesulfide (PPS), and polyoxymethylene (POM)] was studied by hot water immersion testing, tensile testing and water‐hammer fatigue testing. It was found that the degradation of the strength was observed only for the reinforced plastics under hot water immersion and that the change of the tensile strength was most drastic in glass fiber‐reinforced PPS (GFPPS). Scanning electron microscope (SEM) observations of the tensile fracture surface revealed that the change in tensile strength was attributable to the deterioration of the interface between the glass fiber and the matrix resin. The results of acoustic emission analysis also supported the conclusion that the change in strength was due to the deterioration of the interface. Although the change in the tensile strength of glass fiber‐reinforced PPE (GFPPE) was small compared with that of GFPPS, debonding between the glass fiber and the matrix resin and surface cracks was observed on the surface of the GFPPE specimens.  相似文献   

6.
高光泽GF增强POM的研制   总被引:2,自引:0,他引:2  
研究了聚甲醛(POM)的粘度和防玻纤(GF)外露剂的种类、含量、注塑成型工艺对GF增强POM复合材料表面光泽度的影响,测试了添加不同含量防GF外露剂复合材料的力学性能.结果表明,随着POM粘度的降低、防GF外露剂含量的增加、注射速度和压力及模温的提高,GF增强POM复合材料制品的表面光泽度逐渐提高;随着防GF外露剂含量...  相似文献   

7.
We investigated the tensile behavior of glass‐fiber‐filled polyacetal [i.e., polyoxymethylene (POM)], focusing on the mutual influence of the functional groups in the POM matrices and the glass binder system. The different POM matrices were compounded with three kinds of glass fibers (20 wt %) treated with different glass binders, namely, epoxy resin, thermoplastic polyurethane (TPU), and a mixture of TPU and epoxy resin. A good correlation between the tensile strength and elongation at break was observed, regardless of the difference in the glass binders. The composites based on the modified POM matrix, which had both a carboxyl end group and a hydroxyl end group, improved the tensile properties noticeably in comparison with those based on the normal POM matrix. The composites were strengthened with an increase in the concentration of the functional groups. The results of scanning electron microscopy observations indicated that the fractured surfaces of a specimen having maximum tensile strength and elongation exhibited cohesion of the modified POM on the surfaces of the glass fibers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

8.
研究了长玻纤和短玻纤增强聚甲基丙烯酸甲酯(PMMA)复合材料的动态流变性能.结果表明,由于长玻纤比短玻纤更易发生缠结,长玻纤增强PMMA复合材料具有更高的动态模量和动态粘度,且其模量和粘度具有更高的浓度依赖性;长玻纤增强PMMA复合材料时,随着玻纤含量的增加,剪切变稀现象更加明显.  相似文献   

9.
轻量化、绿色环保和舒适安全性将成为我国汽车用材料未来发展方向,树脂基复合材料将是实现汽车轻量化、塑料化的材料之一.介绍了玻璃纤维毡增强热塑性复合材料(GMT)、长纤维增强热塑性复合材料(LET)、天然纤维增强热塑性复合材料(NMT)和碳纤维增强复合材料(CFRP)等的特点和应用实例分析.树脂基复合材料的应用是汽车轻量化设计和选材的发展趋势.  相似文献   

10.
In this work, long basalt fiber reinforced composites were investigated and compared with short basalt fiber reinforced compounds. The results show that long fiber reinforced thermoplastic composites are particularly advantageous in the respects of dynamic mechanical properties and injection molding shrinkage. The fiber orientation in long basalt fiber reinforced products fundamentally differs from short basalt fiber reinforced ones. This results in more isotropic molding shrinkage in case of long basalt fiber reinforced composites. The main advantage of the used long fiber thermoplastic technology is that the special long fiber reinforced pellet can be processed by most conventional injection molding machines. During extrusion compounding the fibers in the compound containing 30 wt% fibers are fragmented to an average length of 0.48 mm (typical of short fiber reinforced thermoplastic compounds), this length decreases further during injection molding to 0.20 mm. Contrarily using long fiber reinforced pellets and cautious injection molding parameters, an average fiber length of 1.8 mm can be achieved with a conventional injection molding machine, which increased the average length/diameter ratio from 14 to 130. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

11.
采用热模压成型的方法,在热塑性聚酰亚胺(TPI)中添加玻璃微珠(GB)、玻璃纤维粉(GFP)和短切玻璃纤维(SGF)进行复合增强,研究了3种不同形态填充材料及其含量对复合材料力学、摩擦磨损及热性能的影响。结果表明,随着填充物填充量的增加,所制得复合材料的刚性明显提高;并且填充物长径比越大,其作用效果越明显,由此制得的复合材料同时具有较低的体积磨损率及线膨胀系数。采用SGF增强复合材料的力学强度也随其填充量的增加显著增大,而采用GB及GFP填充的材料则呈下降趋势。采用SEM观察了复合材料断裂面的结构形貌,初步分析了其增强机理。  相似文献   

12.
本文通过直接挤出混炼的方法制备了长玻璃纤维增强聚丙烯复合材料,研究了长纤维增强聚丙烯复合材料高性能、低成本化的方法。通过与连续玻璃纤维增强聚丙烯织物的组合,获得了力学性能超过玻璃纤维毡增强聚丙烯复合材料的高性能复合材料。在树脂基体中掺混廉价的填料及回收的聚丙烯树脂,结合适当的填料表面处理方法及废弃回收树脂的增韧及抗老化改性,在力学性能保持一定水平的基础上,可有效降低材料的成本。  相似文献   

13.
The direct long‐fiber reinforced thermoplastic (D‐LFT) process offers a streamlined material processing technique and decreases the degradation of the material. To ensure product consistency and process optimization, it is imperative to understand how the process sequence affects degradation and thermal properties of the material during the D‐LFT process. This study investigates variation in molecular weight and thermal properties of the glass fiber reinforced polyamide 6 (PA6) composites throughout the D‐LFT process. Viscosity number (VN) measurements, thermogravimetric analyses (TGA), and differential scanning calorimetry (DSC) analyses were performed on samples taken from different locations along the D‐LFT process. It was found that VN, which is a measure of molecular weight of the PA6 base resin, decreased throughout the processes. In contrast, TGA results suggested that apparent activation energy for decomposition increased during consecutive process stages. Non‐isothermal DSC results showed that there were no significant changes to the degree of crystallization; however, isothermal DSC results indicated that later stages of the process showed a decrease in crystallization half‐time, and the largest changes were observed in areas after the two extrusion portions of the process. POLYM. ENG. SCI., 58:46–54, 2018. © 2017 Society of Plastics Engineers  相似文献   

14.
Silane‐grafted polypropylene manufactured by a reactive grafting process was used as the coupling agent in polypropylene/glass‐fiber composites to improve the interaction of the interfacial regions. Polypropylene reinforced with 30% by weight of short glass fibers was injection‐molded and the mechanical behaviors were investigated. The results indicate that the mechanical properties (tensile strength, tensile modulus, flexural strength, flexural modulus, and Izod impact strength) of the composite increased remarkably as compared with the noncoupled glass fiber/polypropylene. SEM of the fracture surfaces of the coupled composites shows a good adhesion at the fiber/matrix interface: The fibers are coated with matrix polymer, and a matrix transition region exists near the fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1537–1542, 1999  相似文献   

15.
Natural fiber‐based thermoplastic composites are generally lower in strength performance compared to thermoset composites. However, they have the advantage of design flexibility and recycling possibilities. Hybridization with small amounts of synthetic fibers makes these natural fiber composites more suitable for technical applications such as automotive interior parts. Hemp fiber is one of the important lignocellulosic bast fiber and has been used as reinforcement for industrial applications. This study focused on the performance of injection‐molded short hemp fiber and hemp/glass fiber hybrid polypropylene composites. Results showed that hybridization with glass fiber enhanced the performance properties. A value of 101 MPa for flexural strength and 5.5 GPa for the flexural modulus is achieved from a hybrid composite containing 25 wt % of hemp and 15 wt % of glass. Notched Izod impact strength of the hybrid composites exhibited great enhancement (34%). Analysis of fiber length distribution in the composite and fracture surface was performed to study the fiber breakage and fracture mechanism. Thermal properties and resistance to water absorption properties of the hemp fiber composites were improved by hybridization with glass fibers. Overall studies indicated that the short hemp/glass fiber hybrid polypropylene composites are promising candidates for structural applications where high stiffness and thermal resistance is required. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2432–2441, 2007  相似文献   

16.
This research explores mechanical and high velocity impact response of hybrid long carbon/glass fiber-reinforced polypropylene thermoplastic composites (HLFT) with different fiber lengths. The work examines three hybrid long fiber thermoplastic composites, i.e., 5, 10 and 20 mm. The HLFTs were prepared by a combination of extrusion and pultrusion processes and using a cross-head die. Tensile and Izod impact tests were carried out to evaluate the mechanical performance of each HLFT compound. A gas gun with a spherical projectile was used to conduct high velocity impact tests at three velocities of 144, 205 and 240 m/s. The results showed that internal mixing operation caused extensive reduction in fiber length of all three LFT lengths. Tensile strength, modulus and Izod impact test results were the indications of higher values with increase in HLFT length. Comparison of these results for the HLFT with that of corresponding glass/PP LFTs, adopted from earlier work by Shayan Asenjan et al. (J Compos Mater 53:353–360, 2019), showed better performance of HLFT. The high velocity impact results showed a steady higher impact performance with the increase in HFLT fiber length for all impact velocities tested. Comparison of HLFT high velocity impact performance revealed better results for all impact velocities tested with that of the corresponding glass/PP LFT composite.  相似文献   

17.
玻璃纤维增强热塑性塑料的发展概况   总被引:5,自引:0,他引:5  
叶鼎铨 《中国塑料》2005,19(2):8-11
根据玻璃纤维增强热塑性塑料的发展过程分别介绍了短纤维增强热塑性塑料、玻璃纤维毡增强热塑性塑料、玻璃纤维/热塑性塑料复合纤维、长纤维增强热塑性塑料和热塑性拉挤产品的制造方法、特性和应用。  相似文献   

18.
Two types of long jute fiber pellet consisting of twisted‐jute yarn (LFT‐JF/PP) and untwisted‐jute yarn (UT‐JF/PP) pellets are used to prepare jute fiber–reinforced polypropylene (JF/PP) composites. The mechanical properties of both long fiber composites are compared with that of re‐pelletized pellet (RP‐JF/PP) of LFT‐JF/PP pellet, which is re‐compounded by extrusion compounding. High stiffness and high impact strength of JF/PP composites are as a result of using long fiber. However, the longer fiber bundle consequently affects the distribution of jute fiber. The incorporation of 10 wt % glass fibers is found to improve mechanical properties of JF/PP composites. Increasing mechanical properties of hybrid composites is dependent on the type of JF/PP pellets, which directly affect the fiber length and fiber orientation of glass fiber within hybrid composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41819.  相似文献   

19.
In this study, glass fibers were modified using γ‐glycidoxypropyltrimethoxysilane of different concentrations to improve the interfacial adhesion at interfaces between fibers and matrix. Effects of γ‐glycidoxypropyltrimethoxysilane on mechanical properties and fracture behavior of glass fiber/epoxy composites were investigated experimentally. Mechanical properties of the composites have been investigated by tensile tests, short beam tests, and flexural tests. The short‐beam method was used to measure the interlaminar shear strength (ILSS) of laminates. The tensile and flexural properties of composites were characterized by tensile and three‐point bending tests, respectively. The fracture surfaces of the composites were observed with a scanning electron microscope. On comparing the results obtained for the different concentrations of silane solution, it was found that the 0.5% GPS silane treatment provided the best mechanical properties. The ILSS value of heat‐cleaned glass fiber reinforced composite is enhanced by ∼59% as a result of the glass fiber treatment with 0.5% γ‐GPS. Also, an improvement of about 37% in tensile strength, about 78% in flexural strength of the composite with the 0.5% γ‐GPS treatment of glass fibers was observed. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

20.
Innovative polymers and composites are broadening the range of applications and commercial production of thermoplastics. Long fiber‐reinforced thermoplastics have received much attention due to their processability by conventional technologies. This study describes the development of long fiber reinforced polypropylene (LFPP) composites and the effect of fiber length and compatibilizer content on their mechanical properties. LFPP pellets of different sizes were prepared by extrusion process using a specially designed radial impregnation die and these pellets were injection molded to develop LFPP composites. Maleic‐anhydride grafted polypropylene (MA‐g‐PP) was chosen as a compatibilizer and its content was optimized by determining the interfacial properties through fiber pullout test. Critical fiber length was calculated using interfacial shear strength. Fiber length distributions were analyzed using profile projector and image analyzer software system. Fiber aspect ratio of more than 100 was achieved after injection molding. The results of the tensile and flexural properties of injection molded long glass fiber reinforced polypropylene with a glass fiber volume fraction of 0.18 are presented. It was found that the differences in pellet sizes improve the mechanical properties by 3–8%. Efforts are made to theoretically predict the tensile strength and modulus using the Kelly‐Tyson and Halpin‐Tsai model, respectively. POLYM. COMPOS., 28:259–266, 2007. © 2007 Society of Plastic Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号