首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In wireless sensor networks, achieving load balancing in an energy‐efficient manner to improve the network lifetime as much as possible is still a challenging problem because in such networks, the only energy resource for sensor nodes is their battery supplies. This paper proposes a game theoretical‐based solution in the form of a distributed algorithm for constructing load‐balanced routing trees in wireless sensor networks. In our algorithm, load balancing is realized by adjusting the number of children among parents as much as possible, where child adjustment is considered as a game between the parents and child nodes; parents are considered as cooperative players, and children are considered as selfish players. The gained utility by each node is determined by means of some utility functions defined per role, which themselves determine the behavior of nodes in each role. When the game is over, each node gains the maximum benefit on the basis of its utility function, and the balanced tree is constructed. The proposed method provides additional benefits when in‐network aggregation is applied. Analytical and simulation results are provided, demonstrating that our proposed algorithm outperform two recently proposed benchmarking algorithms [1, 2], in terms of time complexity and communication overhead required for constructing the load‐balanced routing trees. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Most of the current generation sensor nodes of mobile wireless sensor network (MWSN) are designed to have heterogeneous mobility to adapt itself in the applied environment. Energy optimization in MWSN with heterogeneous mobility is very challenging task. In this paper, a heterogeneous game theoretical clustering algorithm called mobile clustering game theory–1 (MCGT‐1) is proposed for energy optimization in a heterogeneous mobile sensor environment. Energy optimization is achieved through energy‐efficient cluster head election and multipath routing in the network. A heterogeneous clustering game is modelled with varying attributes and located an asymmetric equilibrium condition for a symmetric game with mixed strategies. The real‐time parameters, namely, predicted remaining energy, distance between a base station and nodes, distance between nodes, and mobility speed, were used to calculate the probability to elect the cluster head (CH). The efficient multipath routing is achieved through prior energy prediction strategy. It has mitigated the generation of “hot spots,” reducing its delay and improving the overall residual energy of the network. Simulation results showed that the average lifetime of MCGT‐1 has increased by 6.33 %, 13.1% and 14.2% and the PDR has improved by 4.8%,11.8%, and 17.2% than MCGT, LEACH‐ME and LEACH‐M respectively. The hot spot delay is reduced to 0.063025 seconds, improving the efficiency of the network.  相似文献   

3.
Energy‐efficient routing becomes one of the most critical technologies for sustaining the overall network lifetime of wireless sensor networks. In this paper, we propose a novel data transmission scheme between a number of specified source nodes and the single sink, which can efficiently restrict the usage frequency of each relay node, measured by the number of source nodes using it for data transmission. On the basis of the importance of source nodes that is closely related to deployed location, they form a descending sequence such that each node finds the minimum energy path earlier than the succeeding one. Then, the energy‐efficient multiple path algorithm with the computational complexity of O(n3) is developed for deriving the minimum energy paths, where n is the number of nodes in the network. Also, a polynomial algorithm is presented for deriving the range of the feasible values of N0 serving as the threshold of the usage frequency of relay nodes, in which each can guarantee the existence of the solution. Further, we theoretically investigate the existence of the solution and the tree‐structured solution using m‐ary tree. Extensive simulation results show that our proposed scheme can achieve significant performance enhancement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
To accomplish the primary objective of data sensing and collection of wireless sensor networks (WSN), the design of an energy efficient routing algorithm is very important. However, the energy constrained sensing nodes along with the intrinsic properties of the (WSN) environment makes the routing a challenging task. To overcome this routing dilemma, an improved distributed, multi‐hop, adaptive, tree‐based energy‐balanced (DMATEB) routing scheme is proposed in this paper. In this scheme, a relay node is selected in view of minimum distance and high energy from a current sensing node. Further, the parent node is chosen among the selected relay nodes on the basis of high residual energy and less power consumption with due consideration of its associated child nodes. As each sensing node itself selects its parent among the available alternatives, the proposed scheme offers a distributive and adaptive approach. Moreover, the proposed system does not overload any selected parent of a particular branch as it starts acting as a child whenever its energy lowers among the other available relay nodes. This leads to uniform energy utilization of nodes that offers a better energy balance mechanism and improves the network lifespan by 20% to 30% as compared with its predecessors.  相似文献   

5.
Designing energy efficient communication protocols for wireless sensor networks (WSNs) to conserve the sensors' energy is one of the prime concerns. Clustering in WSNs significantly reduces the energy consumption in which the nodes are organized in clusters, each having a cluster head (CH). The CHs collect data from their cluster members and transmit it to the base station via a single or multihop communication. The main issue in such mechanism is how to associate the nodes to CHs and how to route the data of CHs so that the overall load on CHs are balanced. Since the sensor nodes operate autonomously, the methods designed for WSNs should be of distributed nature, i.e., each node should run it using its local information only. Considering these issues, we propose a distributed multiobjective‐based clustering method to assign a sensor node to appropriate CH so that the load is balanced. We also propose an energy‐efficient routing algorithm to balance the relay load among the CHs. In case any CH dies, we propose a recovery strategy for its cluster members. All our proposed methods are completely distributed in nature. Simulation results demonstrate the efficiency of the proposed algorithm in terms of energy consumption and hence prolonging the network lifetime. We compare the performance of the proposed algorithm with some existing algorithms in terms of number of alive nodes, network lifetime, energy efficiency, and energy population.  相似文献   

6.
Sensor node energy conservation is the primary design parameters in wireless sensor networks (WSNs). Energy efficiency in sensor networks directly prolongs the network lifetime. In the process of route discovery, each node cooperates to forward the data to the base station using multi‐hop routing. But, the nodes nearer to the base station are loaded more than the other nodes that lead to network portioning, packet loss and delay as a result nodes may completely loss its energy during the routing process. To rectify these issues, path establishment considers optimized substance particle selection, load distribution, and an efficient slot allocation scheme for data transmission between the sensor nodes in this paper. The selection of forwarders and conscious multi‐hop path is selected based on the route cost value that is derived directly by taking energy, node degree and distance as crucial metrics. Load distribution based slot allocation method ensures the balance of data traffic and residual energy of the node in areal‐time environment. The proposed LSAPSP simulation results show that our algorithm not only can balance the real‐time environment load and increase the network lifetime but also meet the needs of packet loss and delay.  相似文献   

7.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

8.
Energy conservation and fault tolerance are two critical issues in the deployment of wireless sensor networks (WSNs). Many cluster‐based fault‐tolerant routing protocols have been proposed for energy conservation and network lifetime maximization in WSNs. However, these protocols suffer from high frequency of re‐clustering as well as extra energy consumption to tolerate failures and consider only some very normal parameters to form clusters without any verification of the energy sufficiency for data routing. Therefore, this paper proposes a cluster‐based fault‐tolerant routing protocol referred as CFTR. This protocol allows higher energy nodes to become Cluster Heads (CHs) and operate multiple rounds to diminish the frequency of re‐clustering. Additionally, for the sake to get better energy efficiency and balancing, we introduce a cost function that considers during cluster formation energy cost from sensor node to CH, energy cost from CH to sink, and another significant parameter, namely, number of cluster members in previous round. Further, the proposed CFTR takes care of nodes, which have no CH in their communication range. Also, it introduces a routing algorithm in which the decision of next hop CH selection is based on a cost function conceived to select routes with sufficient energy for data transfer and distribute uniformly the overall data‐relaying load among the CHs. As well, a low‐overhead algorithm to tolerate the sudden failure of CHs is proposed. We perform extensive simulations on CFTR and compare their results with those of two recent existing protocols to demonstrate its superiority in terms of different metrics.  相似文献   

9.
基于博弈理论的无线传感器网络分布式节能路由算法   总被引:3,自引:0,他引:3  
杨宁  田辉  黄平  张平 《电子与信息学报》2008,30(5):1230-1233
为了有效解决无线传感器网络路由节能问题,该文提出适合无线传感器网络的节能路由算法。在引入博弈理论概念建立网络模型的基础上,通过对于以往传感器网络簇首选择方法的研究,设计了一种基于博弈论的,兼顾节点剩余能量及簇首分布的节能路由DEER(DistributedEnergy-EconomicalRouting),大大节省了分布式决策网络协议的能量损耗。仿真证明了该方法在无线传感器网络中,能够有效地平衡网络负载,节省节点能量,延长网络寿命。  相似文献   

10.
In wireless sensor networks (WSNs), clustering has been shown to be an efficient technique to improve scalability and network lifetime. In clustered networks, clustering creates unequal load distribution among cluster heads (CHs) and cluster member (CM) nodes. As a result, the entire network is subject to premature death because of the deficient active nodes within the network. In this paper, we present clustering‐based routing algorithms that can balance out the trade‐off between load distribution and network lifetime “green cluster‐based routing scheme.” This paper proposes a new energy‐aware green cluster‐based routing algorithm to preventing premature death of large‐scale dense WSNs. To deal with the uncertainty present in network information, a fuzzy rule‐based node classification model is proposed for clustering. Its primary benefits are flexibility in selecting effective CHs, reliability in distributing CHs overload among the other nodes, and reducing communication overhead and cluster formation time in highly dense areas. In addition, we propose a routing scheme that balances the load among sensors. The proposed scheme is evaluated through simulations to compare our scheme with the existing algorithms available in the literature. The numerical results show the relevance and improved efficiency of our scheme.  相似文献   

11.
Wireless sensor networks (WSNs) are being used in a wide variety of critical applications such as military and health‐care applications. Such networks, which are composed of sensor nodes with limited memory capacity, limited processing capabilities, and most importantly limited energy supply, require routing protocols that take into consideration these constraints. The aim of this paper is to provide an efficient power aware routing algorithm for WSNs that guarantees QOS and at the same time minimizes energy consumption by calculating the remaining battery capacity of nodes and taking advantage of the battery recovery process. We present an online‐battery aware geographic routing algorithm. To show the effectiveness of our approach, we simulated our algorithm in ns2 and compared it with greedy perimeter stateless routing for wireless networks and battery‐aware routing for streaming data transmissions in WSNs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.  相似文献   

13.
Heterogeneous wireless sensor networks (WSNs) consist of resource‐starving nodes that face a challenging task of handling various issues such as data redundancy, data fusion, congestion control, and energy efficiency. In these networks, data fusion algorithms process the raw data generated by a sensor node in an energy‐efficient manner to reduce redundancy, improve accuracy, and enhance the network lifetime. In literature, these issues are addressed individually, and most of the proposed solutions are either application‐specific or too complex that make their implementation unrealistic, specifically, in a resource‐constrained environment. In this paper, we propose a novel node‐level data fusion algorithm for heterogeneous WSNs to detect noisy data and replace them with highly refined data. To minimize the amount of transmitted data, a hybrid data aggregation algorithm is proposed that performs in‐network processing while preserving the reliability of gathered data. This combination of data fusion and data aggregation algorithms effectively handle the aforementioned issues by ensuring an efficient utilization of the available resources. Apart from fusion and aggregation, a biased traffic distribution algorithm is introduced that considerably increases the overall lifetime of heterogeneous WSNs. The proposed algorithm performs the tedious task of traffic distribution according to the network's statistics, ie, the residual energy of neighboring nodes and their importance from a network's connectivity perspective. All our proposed algorithms were tested on a real‐time dataset obtained through our deployed heterogeneous WSN in an orange orchard and also on publicly available benchmark datasets. Experimental results verify that our proposed algorithms outperform the existing approaches in terms of various performance metrics such as throughput, lifetime, data accuracy, computational time, and delay.  相似文献   

14.
This paper presents an energy‐efficient spatial join algorithm for multiple sensor networks employing a spatial semijoin strategy. For optimization of the algorithm, we propose a GR‐tree index and a grid‐ID‐based spatial approximation method, which are unique to sensor networks. The GR‐tree is a distributed spatial index over the sensor nodes, which efficiently prunes away the nodes that will not participate in a spatial join result. The grid‐ID‐based approximation provides great reduction in communication cost by approximating many spatial objects in simpler forms. Our experiments demonstrate that the algorithm outperforms existing methods in reducing energy consumption at the nodes.  相似文献   

15.
Topology control plays an important role in the design of wireless ad hoc and sensor networks and has demonstrated its high capability in constructing networks with desirable characteristics such as sparser connectivity, lower transmission power, and smaller node degree. However, the enforcement of a topology control algorithm in a network may degrade the energy‐draining balancing capability of the network and thus reduce the network operational lifetime. For this reason, it is important to take into account energy efficiency in the design of a topology control algorithm in order to achieve prolonged network lifetime. In this paper, we propose a localized energy‐efficient topology control algorithm for wireless ad hoc and sensor networks with power control capability in network nodes. To achieve prolonged network lifetime, we introduce a concept called energy criticality avoidance and propose an energy criticality avoidance strategy in topology control and energy‐efficient routing. Through theoretical analysis and simulation results, we prove that the proposed topology control algorithm can maintain the global network connectivity with low complexity and can significantly prolong the lifetime of a multi‐hop wireless network as compared with existing topology control algorithms with little additional protocol overhead. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Inspired by the backbone concept in wired networks, a virtual backbone is expected to bring substantial benefits to routing in wireless sensor networks (WSNs). A connected dominating set (CDS) is used as a virtual backbone for efficient routing and broadcasting in WSNs. Most existing works focus on constructing a minimum CDS, a k‐connect m‐dominating CDS, a minimum routing cost CDS, or a bounded‐diameter CDS. However, the load‐balance factor is not considered for CDSs in WSNs. In this paper, a greedy‐based approximation algorithm is proposed to construct load‐balanced CDS in a WSN. More importantly, we propose a new problem: the Load‐balanced Allocate Dominatee problem. Consequently, we propose an optimal centralized algorithm and an efficient probability‐based distributed algorithm to solve the Load‐balanced Allocate Dominatee problem. For a given CDS, the upper and lower bounds of the performance ratio of the distributed algorithm are analyzed in the paper. Through extensive simulations, we demonstrate that our proposed methods extend network lifetime by up to 80% compared with the most recently published CDS construction algorithm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Wireless sensor networks (WSNs) include large distributed nodes in the sensing field. However, the sensor nodes may die due to energy deficiency as they are situated in a hostile environment. Therefore, an energy‐efficient WSN routing protocol is necessary in order to better accommodate the various environmental conditions. In this paper, we have proposed a new Energy‐Efficient Genetic Spider Monkey‐based Routing Protocol (EGSMRP) to improve the stability and lifetime of sensor nodes. The operation of EGSMRP is classified into two stages: (i) setup phase and (ii) steady‐state phase. In the setup phase, GSMO‐based cluster head selection procedure is done. In this phase, the base station utilizes the GSMO algorithm as a device to generate energy‐efficient clusters. Followed with this, the steady‐state phase solves the load balancing issue by utilizing the intracluster data broadcast and dual‐hop intercluster broadcasting algorithm. Thereby, the proposed EGSMRP protocol has shown the energy‐based opportunistic broadcasting with reduced control overhead. Simulation is performed in various conditions to evaluate the effectiveness of the proposed EGSMRP protocol using different metrics such as throughput, control overhead, energy consumption, end‐to‐end delay, and network lifetime. From the simulation results, it was evident that EGSMRP has achieved a higher performance compared to other traditional approaches such as EBAR, MCTRP, IEEMARP, HMCEER, and EFTETRP.  相似文献   

18.
Wireless multimedia sensor networks (WMSNs) have an increasing variety of multimedia‐based applications including image and video transmission. In these types of applications, multimedia sensor nodes should ideally maximize perceptual quality and minimize energy expenditures in communication. For the required perceptual quality to be obtained, quality‐aware routing is a key research area in WMSNs. However, mapping the system parameters to the end user's perceptual quality‐of‐service measures is a challenging task because of incomplete identification metrics. Unfortunately, unless disputable assumptions and simplifications are made, optimal routing algorithm is not tractable. In this paper, we propose a novel image transmission framework to optimize both perceptual quality and energy expenditure in WMSNs. Our framework aims to provide acceptable perceptual quality at the end user by using an analytical distortion prediction model that is able to predict the image distortion resulting from any given error pattern. The innovation of the proposed scheme lies in the combined use of a content‐aware packet prioritization with an energy‐aware and quality‐aware routing protocol, named as image quality‐aware routing. Additionally, it does not only propose an energy‐efficient route selection policy but also manages the network load according to the energy residues of nodes, thus leading to a great energy economy. The results reveal that the framework is capable of identifying true metrics for mapping required image quality to network parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
With the increasing demands for mobile wireless sensor networks in recent years, designing an energy‐efficient clustering and routing protocol has become very important. This paper provides an analytical model to evaluate the power consumption of a mobile sensor node. Based on this, a clustering algorithm is designed to optimize the energy efficiency during cluster head formation. A genetic algorithm technique is employed to find the near‐optimal threshold for residual energy below which a node has to give up its role of being the cluster head. This clustering algorithm along with a hybrid routing concept is applied as the near‐optimal energy‐efficient routing technique to increase the overall efficiency of the network. Compared to the mobile low energy adaptive clustering hierarchy protocol, the simulation studies reveal that the energy‐efficient routing technique produces a longer network lifetime and achieves better energy efficiency.  相似文献   

20.
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Ant-colony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号