首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To increase the efficiency of photovoltaic (PV) systems, maximum power point (MPP) tracking of the solar arrays is needed. Solar arrays output power depends on the solar irradiance and temperature. Also the mismatch phenomenon caused by partial shade will affect the output power of solar systems and lead to the incorrect operation of conventional MPP tracker. Under partially shaded conditions, the solar array power–current characteristic has multiple maximum. This paper presents a maximum power point tracking (MPPT) with particle swarm optimization method for PV systems under partially shaded condition. The performance of the proposed method is compared with perturb and observe (P&O), improved P&O, voltage‐based maximum power point tracking and current‐based maximum power point tracking algorithms, especially, under partially shaded condition. Simulation results confirm that proposed MPPT algorithm with high accuracy can track the peak power point under different insolation, temperature and partially shaded conditions, and it has the best performance in comparison with four mentioned MPPT algorithms. Also under rapidly changing atmospheric conditions, the P&O algorithm is diverged. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Partial shading has been recognized as a major cause of energy losses in photovoltaic (PV) power generators. Partial shading has severe effects on the electrical characteristics of the PV power generator, because it causes multiple maximum power points (MPPs) to the power‐voltage curve. Multiple maxima complicate MPP tracking, and the tracking algorithms are often unable to detect the global maximum. Considerable amount of available electrical energy may be lost, when a local MPP with low power is tracked instead of the global MPP. In this paper, the electrical characteristics of series‐connected silicon‐based PV modules under various partial shading conditions are studied by using a Matlab/Simulink simulation model. The simulation model consists of 18 series‐connected PV modules, corresponding to a single‐phase grid‐connected PV power generator. The validity of the simulation model has been verified by experimental measurements. The voltage and power characteristics of the PV power generator have been investigated under various system shading and shading strength conditions. The results can be utilized to develop new MPP tracking algorithms and in designing, for example, building integrated PV power generators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Achieving the maximum power output from photovoltaic (PV) modules is indispensable for the operation of grid‐connected PV power systems under varied atmospheric conditions. In recent years, the study of PV energy for different applications has attracted more and more attention because solar energy is clean and renewable. We propose an efficient direct‐prediction method to enhance the utilization efficiency of thin film PV modules by tackling the problem of tracking time and overcoming the difficulty of calculation. The proposed method is based on the p–n junction recombination mechanism and can be applied to all kinds of PV modules. Its performance is not influenced by weather conditions such as illumination or temperature. The experimental results show that the proposed method provides high‐accuracy estimation of the maximum power point (MPP) for thin film PV modules with an average error of 1.68% and 1.65% under various irradiation intensities and temperatures, respectively. The experimental results confirm that the proposed method can simply and accurately estimate the MPP for thin film PV modules under various irradiation intensities and temperatures. In future, the proposed method will be used to shed light on the optimization of the MPP tracking control model in PV systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a novel maximum power point tracking (MPPT) method based on the grey wolf optimisation (GWO) technique for photovoltaic (PV) power generation systems. The proposed method utilises previous working duty cycles and their corresponding voltage and current data to compute the instantaneous DC impedance of a PV string. To determine the peak power characteristics of any PV string, the impedance variation of that PV string is used as an efficient shading factor. This shading factor simplifies the calculation of the GWO-MPPT algorithm to obtain multiple peak targets under partial shading conditions. Thus, the efficiency of the proposed power tracking technique can be improved considerably. The effectiveness of this method was validated through both simulation and hardware implementations. Results revealed that the search performance of five iterations of the proposed method was similar to that of ten iterations of a traditional GWO-MPPT method under normal conditions without shading. These results confirm the practicability of the proposed method in various applications.  相似文献   

5.
A new perturbed‐based extremum seeking control (PESC) scheme is proposed in this paper to track the global maximum power point (GMPP). The PESC scheme has two control loops based on power of the photovoltaic (PV) array: the first loop operates as usually to track the maximum power point and the second sweeps all local MPPs to locate the GMPP. Once the GMPP is located based on its uniqueness (after the PV pattern is quickly scanned many times, depending on the PV pattern's profile), the GMPP is accurately tracked based on first control loop. The used PV patterns have the profile of the PV power characteristics obtained for PV array under partially shaded conditions (PSCs). This PESC scheme is proposed to track the GMPP in the PV applications, but also in other multimodal problems from industry, being a good motif to revive the specialists' interest for the extremum seeking control field. The results obtained here are very promising for both search speed and tracking accuracy performances of the GMPP under different PSCs simulated on the PV array. Thus, the energy efficiency of PV array controlled with the proposed PESC scheme will increase with more than 1.2% in comparison with that obtained with the other MPP algorithms because of better performance shown by this PESC scheme. A 99.6% tracking accuracy is obtained here in comparison with a maximum 98.4% tracking accuracy reported in the literature. Furthermore, 100% hit and high search speed are obtained here for the GMPP localization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Solar photovoltaic (PV) arrays in portable applications are often subject to partial shading and rapid fluctuations of shading. In the usual series-connected wiring scheme, the residual energy generated by partially shaded cells either cannot be collected (if diode bypassed) or, worse, impedes collection of power from the remaining fully illuminated cells (if not bypassed). Rapid fluctuation of the shading pattern makes maximum power point (MPP) tracking difficult; generally, there will exist multiple local MPPs, and their values will change as rapidly as does the illumination. In this paper, a portable solar PV system that effectively eliminates both of the aforementioned problems is described and proven. This system is capable of simultaneously maximizing the power generated by every PV cell in the PV panel. The proposed configuration consists of an array of parallel-connected PV cells, a low-input-voltage step-up power converter, and a simple wide bandwidth MPP tracker. Parallel-configured PV systems are compared to traditional series-configured PV systems through both hardware experiments and computer simulations in this paper. Study results demonstrate that, under complex irradiance conditions, the power generated by the new configuration is approximately twice that of the traditional configuration. The solar PV system can be widely used in many consumer applications, such as PV vests for cell phones and music players.  相似文献   

7.
In this paper, an improved maximum power point tracking (MPPT) approach being low parameter dependency, simple structure and limited search interval has been presented for distributed MPPT photovoltaic (PV) systems. Basically, this approach is based on scanning of power–voltage (P-V) characteristic curve of PV modules in a limited duty ratio interval which makes tracking operation simple, fast and efficiently available in both uniform irradiance and partial shading conditions (PSCs). By limiting the scanning interval of maximum and minimum values of duty ratio via some analyses related to P-V characteristic for PSCs, global MPPT (GMPPT) is achieved in an efficient way. So as to validate performance of the proposed approach, a single-ended primary inductance converter has been used in both simulation and experimental studies. PV simulator has been used as a PV source to obtain different module characteristics with different number of bypass diodes and PV power levels. Both simulation and experimental results clarify that improved MPPT approach realises GMPPT effectively. Due to the high performance results, this approach can be an alternative technique in module-integrated converters, smart modules and PV power optimisers in which single module is used.  相似文献   

8.
ABSTRACT

Efficiency has been a major factor in the growth of photovoltaic (PV) systems. Different control techniques have been explored to extract maximum power from PV systems under varying environmental conditions. This paper evaluates the performance of a new improved control technique known as model predictive control (MPC) in power extraction from PV systems. Exploiting the ability of MPC to predict future state of controlled variables, MPC has been implemented for tacking of maximum power point (MPP) of a PV system. Application of MPC for maximum power point tracking (MPPT) has been found to result into faster tracking of MPP under continuously varying atmospheric conditions providing an efficient system. It helps in reducing unwanted oscillations with an increase in tracking speed. A detailed step by step process of designing a model predictive controller has been discussed. Here, MPC has been applied in conjunction with conventional perturb and observe (P&O) method for controlling the dc-dc boost converter switching, harvesting maximum power from a PV array. The results of MPC controller has been compared with two widely used conventional methods of MPPT, viz. incremental conductance method and P&O method. The MPC controller scheme has been designed, implemented and tested in MATLAB/Simulink environment and has also been experimentally validated using a laboratory prototype of a PV system.  相似文献   

9.
Current-voltage and power-voltage characteristics of large photovoltaic (PV) arrays under partially shaded conditions are characterized by multiple steps and peaks. This makes the tracking of the actual maximum power point (MPP) [global peak (GP)] a difficult task. In addition, most of the existing schemes are unable to extract maximum power from the PV array under these conditions. This paper proposes a novel algorithm to track the global power peak under partially shaded conditions. The formulation of the algorithm is based on several critical observations made out of an extensive study of the PV characteristics and the behavior of the global and local peaks under partially shaded conditions. The proposed algorithm works in conjunction with a DC-DC converter to track the GP. In order to accelerate the tracking speed, a feedforward control scheme for operating the DC-DC converter is also proposed, which uses the reference voltage information from the tracking algorithm to shift the operation toward the MPP. The tracking time with this controller is about one-tenth as compared to a conventional controller. All the observations and conclusions, including simulation and experimental results, are presented.  相似文献   

10.
Photovoltaic power systems are usually integrated with some specific control algorithms to deliver the maximum possible power. Several maximum power point tracking (MPPT) methods that force the operating point to oscillate have been presented in the past few decades. In the MPPT system, the ideal operation is to determine the maximum power point (MPP) of the photovoltaic (PV) array directly rather than to track it by using the active operation of trial and error, which causes undesirable oscillation around the MPP. Since the output features of a PV cell vary with environment changes in irradiance and temperature from time to time, real-time operation is required to trace the variations of local MPPs in PV power systems. The method of real-time estimation proposed in this paper uses polynomials to demonstrate the power–voltage relationship of PV panels and implements the recursive least-squares method and Newton–Raphson method to identify the voltage of the optimal operating point. The effectiveness of the proposed methods is successfully demonstrated by computer simulations and experimental evaluations of two major types of PV panels, namely: 1) crystalline silicon and 2) copper–indium–diselenide thin film.  相似文献   

11.
Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. Thus, an MPPT can minimize the overall system cost. MPPTs find and maintain operation at the maximum power point, using an MPPT algorithm. Many such algorithms have been proposed. However, one particular algorithm, the perturb‐and‐observe (P&O) method, claimed by many in the literature to be inferior to others, continues to be by far the most widely used method in commercial PV MPPTs. Part of the reason for this is that the published comparisons between methods do not include an experimental comparison between multiple algorithms with all algorithms optimized and a standardized MPPT hardware. This paper provides such a comparison. MPPT algorithm performance is quantified through the MPPT efficiency. In this work, results are obtained for three optimized algorithms, using a microprocessor‐controlled MPPT operating from a PV array and also a PV array simulator. It is found that the P&O method, when properly optimized, can have MPPT efficiencies well in excess of 97%, and is highly competitive against other MPPT algorithms. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
为了解决光伏(PV)系统在局部阴影条件下(PSC)的最大功率点跟踪问题,提出了一种基于改进粒子群算法(PSO)的快速最大功率点跟踪(MPPT)方法。与传统基于PSO的MPPT系统不同的是,采用了基于转换器电流动态行为的变量抽样时间策略(VSTS),并且为了更快速的实现最大功率点跟踪,引入三个重要因数,即:粒子数、收敛速度以及抽样时间。采用DSP平台对提出系统进行了具体实现和性能评估,实验结果显示相比其他类似系统,在不同条件(包括PSC)下,提出算法均能够实现速度跟踪且精确度较高。  相似文献   

13.
根据太阳能光伏电池的等效电路特点,建立了相应的光伏电池组件的仿真模型。该模型可以实现在不同光照强度和温度下光伏组件的输出特性,在此模型基础上研究了光伏组件最大功率追踪方法(MPPT)。在众多最大功率追踪方法中,扰动法有着比较优秀的控制效果。针对最常用的最大功率点跟踪方法-扰动观察法,提出一种改进型的扰动法算法,通过仿真结果和实验证明该方法在一定程度上可解决光伏电池输出非线性的问题,有效避免跟踪偏差,提高光伏电池的输出效率,且动态响应速度快,使光伏系统具有良好的动态和稳态性能。  相似文献   

14.
Photovoltaic (PV) power system performance depends on local irradiance conditions. PV systems are sometimes subject to partial shading, which may produce a nonideal characteristic curve, presenting true and local power maxima in the P -I curve. Traditional maximum power point tracking (MPPT) algorithms can converge to local maximum, which is not the true MPP. In order to solve the problem, this paper investigates the effects of nonuniform solar irradiance distribution on a PV source. An MPPT algorithm that is able to optimize the source instantaneous operating power under nonuniform irradiance is proposed. The ability of the algorithm and its increased performance with respect to traditional algorithms are evaluated by means of experimental tests performed on a real PV power system.  相似文献   

15.
This paper proposes a novel maximum-power-point tracking (MPPT) method with a simple algorithm for photovoltaic (PV) power generation systems. The method is based on use of a short-current pulse of the PV to determine an optimum operating current where the maximum output power can be obtained and completely differs from conventional hill-climbing-based methods. In the proposed system, the optimum operating current is instantaneously determined simply by taking a product of the short-current pulse amplitude and a parameter k because the optimum operating current is exactly proportional to the short current under various conditions of illuminance and temperature. Also, the system offers an identification capability of k by means of fast power-versus-current curve scanning, which makes the short-current pulse-based MPPT method adaptive to disturbances such as shades partially covering the PV panels and surface contamination. The above adaptive MPPT algorithm has been introduced into a current-controlled boost chopper and a multiple power converter system composed of PV-and-chopper modules. Various operating characteristics have experimentally been examined on this multiple PV-and-chopper module system from a practical viewpoint and excellent MPPT performance has been confirmed through the tests  相似文献   

16.
Recently, installation of photovoltaic power systems such as building‐integrated photovoltaic in urban area has been spotlighted in renewable energy engineering field, even at the expense of the performance degradation from partial shading. The efficiency degradation of maximum power point tracking (MPPT) performance can be compensated by a kind of power‐conditioning system architecture such as module‐integrated converters (MIC), which can handle the optimal‐operation tracking for its own photovoltaic (PV) module. In case of a MIC with series‐connected outputs, it is easy to obtain a high DC‐link voltage for multiple stage PV power conditioning applications. However, switching ripple of the DC‐link voltage also increases as number of the modules increases. In this paper, as a solution for the ripple reduction, interleaved pulse width modulation‐phase synchronizing method is applied to the PV MIC modules. The switching‐ripple analysis of the MPPT power modules were performed and compared between the cases such as phase control or not. For the implementation of the phase control among the modules, Zigbee (XBee Pro, Digi International, Minnetonka, MN, USA) wireless communications transceiver and DSP (TMS320F28335, Texas Instruments, Dallas, TX, USA) series communications interface are utilized. Hardware prototype of the double‐module boost‐type 80‐W MICs has been built to validate the DC‐link voltage ripple reduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
光伏电池的输出功率取决于外界环境(温度和光照条件)和负载状况,需采用最大功率点跟踪(MPPT)电路,才能使光伏电池始终输出最大功率,从而充分发挥光伏器件的光电转换效能.在比较了常用光伏发电系统控制的优缺点后,依据MPPT控制算法的基本工作原理,主电路采用双并联Boost电路,具有电压提升功能,并且能够提高DC-DC环节的额定功率和减小直流母线电压的纹波.针对传统扰动观察法存在的振荡和误判问题,提出了一种新型的基于双并联Boost电路的改进扰动观察法最大功率跟踪策略.在Matlab/Simulink下进行了建模与仿真,仿真结果表明,当外界环境发生变化时,系统能快速准确跟踪此变化,避免算法误判现象的发生,通过改变当前的负载阻抗,使之与光伏电池的输出阻抗等值相匹配采满足最大功率输出的要求,使系统始终工作在最大功率点处,并且在最大功率点处具有很好的稳态性能.最后通过实验验证了该算法的有效性.  相似文献   

18.
The efficiency of photovoltaic (PV) power system is hampered to a large extent when it is shaded even by a fraction. The performance dwindle in PV array due to partial shading is not proportional to the volume of shading, rather it depends on pattern of shading, array configuration, and site where PV panels are installed. Total cross‐tied (TCT) is the proven scheme among all the prevailing interconnection schemes like series, parallel, series–parallel (SP), and bridge linked to negate partial shading impact. This work aims at proposing a new adaptive algorithm to reconfigure the PV array such that it evades the shading effect. Also, it suggests a unique PV panel arrangement for a familiar shading pattern by which the shading prospects are reduced considerably. The proposed work has a clear edge over the TCT method in managing shading, ruling out multiple peaks in output power curve. This technique is highly recommended for constant power loads as the output current is maintained constant, setting aside the varying atmospheric conditions, whereas other reconfiguring techniques do not address this application. The suggested topology is simulated in matlab /Simscape environment for a 3 × 3 PV array and realized in a hardware prototype where a digital signal controller Dspic30f4011 is used to impart the proposed control algorithm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The improved maximum power point tracking (MPPT) control method for small-scale dual-module photovoltaic (PV) systems is presented in this paper. With this method, the voltage and current information of each module are shared and utilized for the detection of the maximum-power point (MPP) without measuring power. This approach can be implemented in a simple structure, especially due to the elimination of memory and multiplication devices. The proposed method is verified by a hardware prototype of grid-connected dual-module PV systems with the proposed analog-implemented MPPT controller. In addition, practical issues of the proposed scheme are considered.  相似文献   

20.
The increasing number of photovoltaic inverters that are coming on to the PV market stresses the need to carry out a dynamic characterization of these elements and their maximum power point tracking (MPPT) algorithms under real operating conditions. In order to make these conditions repeatable at the laboratory, PV array simulators are used. However, actual simulators, including the commercial simulators, recreate only a single or small set of PV array characteristic curves in which quite commonly theoretical calculations are included in order to simulate irradiance and temperature artificial variations. This is far from being a recreation of the real and long dynamic behavior of a PV array or generator. The testing and evaluation of the performance of PV inverters and MPPT algorithms has to be carried out when the PV system moves dynamically according to real operating conditions, including processes such as rapidly changing atmospheric conditions, partial shadows, dawn, and nightfall. This paper tries to contribute to the analysis of this problem by means of an electronic system that both measures the real evolution of the characteristic curves of PV arrays at outdoor operation and then recreates them at the laboratory to test PV inverters. This way the equipment can highlight the different performances of PV inverters and MPPT techniques when they operate under real operating conditions. As an example, two commercial inverters are tested and analyzed under the recreated behavior of a PV generator during 2 singular days that include processes of partial shading and fast irradiance variations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号