首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxy resin nanocomposites incorporated with 0.5, 1, 2, and 4 wt % pristine graphene and modified graphene oxide (GO) nanoflakes were produced and used to fabricate carbon fiber‐reinforced and glass fiber‐reinforced composite panels via vacuum‐assisted resin transfer molding process. Mechanical and thermal properties of the composite panels—called hierarchical graphene composites—were determined according to ASTM standards. It was observed that the studied properties were improved consistently by increasing the amount of nanoinclusions. Particularly, in the presence of 4 wt % GO in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 15% (21%), 34% (84%), and 40% (68%), respectively. Likewise, with inclusion of 4 wt % pristine graphene in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 11% (7%), 30% (77%), and 34% (58%), respectively. Also, thermal conductivity of the carbon fiber (glass fiber) composites with 4% GO inclusion was improved 52% (89%). Similarly, thermal conductivity of the carbon fiber (glass fiber) composites with 4% pristine graphene inclusion was improved 45% (80%). The reported results indicate that both pristine graphene and modified GO nanoflakes are excellent options to enhance the mechanical and thermal properties of fiber‐reinforced polymeric composites and to make them viable replacement materials for metallic parts in different industries, such as wind energy, aerospace, marine, and automotive. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40826.  相似文献   

2.
Poly(urethane‐co‐vinyl imidazole) (PUVI)/graphene nanocomposites were facilely prepared by a kind of noncovalent way. Herein, the 1‐vinylimidazole acted as dispersion agent as well as monomer, graphene was uniformly dispersed in the copolymer matrix without obviously agglomeration. A significant enhancement of mechanical and thermal properties of the PUVI/graphene nanocomposites were obtained at low graphene loading; specifically, a 147% improvement of tensile strength, a nearly 10 times increase of elastic modulus and a 12°C enhancement of thermal decomposition temperature were achieved at a graphene loading of 1.5 wt%. Moreover, the volume resistivity of the PUVI/graphene nanocomposites decreased by an order of magnitude after adding 0.5 wt% graphene, demonstrating an obvious change in the electrical property of the nanocomposites prepared. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
In this study, we report an effective method to fabricate high‐performance polyimide (PI)‐based nanocomposites using 3‐aminopropyltriethoxysilane functionalized graphene oxide (APTSi‐GO) as the reinforcing filler. APTSi‐GO nanosheets exhibit good dispersibility and compatibility with the polymer matrix because of the strong interfacial covalent interactions. PI‐based nanocomposites with different loadings of functionalized graphene nanosheets (FGNS) were prepared by in situ polymerization and thermal imidization. The mechanical performance, thermal stability, and electrical conductivity of the FGNS/PI nanocomposites are significantly improved compared with those of pure PI by adding only a small amount of FGNS. For example, a 79% improvement in the tensile strength and a 132% increase in the tensile modulus are achieved by adding 1.5 wt % FGNS. The electrical and thermal conductivities of 1.5 wt % FGNS/PI are 2.6 × 10?3 S/m and 0.321 W/m·K, respectively, which are ~1010 and two times higher than those of pure PI. Furthermore, the incorporation of graphene significantly improves the glass‐transition temperature and thermal stability. The success of this approach provides a good rationale for developing multifunctional and high‐performance PI‐based composite materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42724.  相似文献   

4.
This article reports ultrasound–assisted synthesis of polymethyl methacrylate (PMMA)/reduced graphene oxide (RGO) nanocomposites by in situ emulsion polymerization coupled with in situ reduction of graphene oxide. The thermal degradation kinetics of the nanocomposites was also assessed with Criado and Coats‐Redfern methods. Intense microconvection generated by ultrasound and cavitation results in uniform dispersion of RGO in the polymer matrix, which imparts markedly higher physical properties to resulting nanocomposites at low (≤1.0 wt %) RGO loadings, as compared to nanocomposites synthesized with mechanical stirring. Some important properties of the PMMA/RGO nanocomposites synthesized with sonication (with various RGO loadings) are: glass transition temperature (0.4 wt %) = 124.5°C, tensile strength (0.4 wt %) = 40.4 MPa, electrical conductivity (1.0 wt %) = 2 × 10?7 S/cm, electromagnetic interference shielding effectiveness (1.0 wt %) = 3.3 dB. Predominant thermal degradation mechanism of nanocomposites (1.0 wt % RGO) is 1D diffusion with activation energy of 111.3 kJ/mol. © 2017 American Institute of Chemical Engineers AIChE J, 64: 673–687, 2018  相似文献   

5.
Electrical, mechanical, and thermal properties of the poly(methyl methacrylate) (PMMA) composites containing functionalized multiwalled carbon nanotubes (f‐MWCNTs) and reduced graphene oxide (rGO) hybrid nanofillers have been investigated. The observed electrical percolation threshold of FHC is 0.8 wt% with maximum conductivity of 1.21 × 10?3 S/cm at 4 wt% of f‐MWCNTs. The electrical transport mechanism and magneto resistance studied of hybrid composites have also been investigated. Progressive addition of f‐MWCNTs in rGO/PMMA composite results increase in mechanical (tensile strength and Young's modulus) and thermal (thermal stability) properties of f‐MWCNTs‐rGO/PMMA hybrid nanocomposites (FHC). The increased mechanical properties are due to the efficient load transfer from PMMA matrix to f‐MWCNTs and rGO through better chemical interaction. The strong interaction between PMMA and f‐MWCNTs‐rGO in FHC is the main cause for improved thermal stability. POLYM. ENG. SCI., 59:1075–1083, 2019. © 2019 Society of Plastics Engineers  相似文献   

6.
Nanomaterials gained great importance on account of their wide range of applications in many areas. Carbon nanotubes (CNTs) exhibit exceptional electrical, thermal, gas barrier, and tensile properties and can therefore be used for the development of a new generation of composite materials. Functionalized multiwalled carbon nanotubes (MWCNTs) reinforced Polyacrylonitrile‐co‐starch nanocomposites were prepared by in situ polymerization technique. The structural property of PAN‐co‐starch/MWCNT nanocomposites was studied by X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The conductivity, tensile strength, and thermal properties of nanocomposites were measured as a function of MWCNT concentrations. The thermal stability, conductivity, and tensile strength of PAN‐co‐starch/MWCNT nanocomposites were improved with increasing concentration of MWCNTs. Oxygen barrier property of PAN‐co‐starch/MWCNT nanocomposites was calculated and it was found that, the property was reduced substantially with increase of MWCNTs proportion. The synthesized PAN‐co‐starch/MWCNT nanocomposites may used for electrostatically dissipative materials, aerospace or sporting goods, and electronic materials. © 2013 Society of Plastics Engineers  相似文献   

7.
A new thermally conductive photoresist was developed. It was based on a dispersion of boron nitride (BN) nanoflakes in a negative‐tone photosensitive polyimide (PSPI) precursor. 3‐Mercaptopropionic acid was used as the surfactant to modify the BN nanoflake surface for the dispersion of BN nanoflakes in the polymer. The thermal conductivity of the composite films increased with increasing BN fraction. The thermal conductivity of the PSPI/BN nanocomposite was up to 0.47 W m−1 K−1 for a mixture containing 30 wt % nanosized BN filler in the polyimide matrix. Patterns with a resolution of 30 μm were obtained from the PSPI/BN nanocomposites. The PSPI/BN nanocomposites had excellent thermal properties. Their glass‐transition temperatures were above 360°C, and the thermal decomposition temperatures were over 460°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The objective of this work is to modify graphene and study the effect of modification of graphene in thermal and electrical properties of graphene/polypyrrole and graphene/polyaniline nanocomposites. The amine functionalization of graphene was confirmed by Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The nanocomposites were prepared by insitu oxidative polymerization method using ammonium persulfate as oxidant. Field emission scanning electron microscopy and high‐resolution transmission electron microscopy were used to study the morphology of the nanocomposites which indicates toward the better dispersion of modified graphene within the polymer matrices as compared to unmodified composites. The modification of graphene played an important role in the noticeable improvements in electrical conductivity of the prepared composites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Supramolecular crosslinked FeII‐terpyridine cellulose nanocrystals (Fe‐CTP) were prepared by surface modification of cellulose nanocrystals with 4′‐chloro‐2,2′:6′,2″‐terpyridine and subsequent reaction with Fe(II)SO4. The prepared complex was characterized using transmission electron microscopy (TEM), ultraviolet spectroscopy (UV), thermogravimetric analysis (TGA), and measuring its electrical properties at temperatures from 25 to 70°C. Use of Fe‐CTP at loadings from 1% to 10% (wt. ratio) in nanocomposites with polycaprolactone polymer was investigated; the nanocomposites were characterized regarding their electrical properties, which studied using broadband AC‐relaxation spectroscopy in the frequency range between 0.1 Hz and 1 MHz. The results were compared to that of PCL nanocomposites containing multiwalled carbon nanotubes (CNT). Variation in real and imaginary parts of permittivity has been explained on the basis of interfacial polarization of fillers in the polymer medium. The percolation limit of the conductive CNT and Fe‐CTP as studied by ac conductivity measurements has also been reported. Fe‐CTP showed conductivity values in the range of semiconductors. PCL/Fe‐CTP nanocomposites showed conductivity values from 1.98 × 10−11 to 3.76 × 10−6 while PCL/CNT nanocomposites showed conductivity values from 1.4 × 10−10 to 3.67 × 10−4 S/m for 1–10 wt% CNT content. POLYM. COMPOS., 37:2734–2743, 2016. © 2015 Society of Plastics Engineers  相似文献   

10.
Enhancing thermal conductivity of polymeric nanocomposites remains a great challenge because of the poor compatibility between nanofillers and the polymeric matrix and the aggregation effect of nanofillers. We report the enhanced thermal conductivity of poly(lactic acid) (PLA)‐based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid. Graphite nanoplatelets (GNPs) were noncovalently functionalized with tannic acid (TA) by van der Waals forces and π–π interaction without perturbing the conjugated sp2 network, thus preserving the high thermal conductivity of GNPs. PLA‐based nanocomposites with different contents of TA‐functionalized GNPs (TA‐GNPs) were prepared and characterized, and the influences of TA‐GNPs content on the morphologies, mechanical properties, and thermal properties of the composites were investigated in detail. TA‐GNPs remarkably improved the thermal conductivity of PLA up to 0.77 W/(m K), showing its high potential as a thermally conductive filler for polymer‐based nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46397.  相似文献   

11.
《Ceramics International》2022,48(9):12240-12254
In this research, different samples of cobalt/graphene oxide nanocomposites were successfully synthesized electrochemically by applying different voltages. Their structure, magnetization and electrical properties were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), atomic force microscope (AFM), fourier transformation infrared (FT-IR), vibrating sample magnetometer (VSM), two point probe electrical conductivity meter, galvanostat/potentiostat, and universal testing machine. The results of structural characterization confirmed the formation of cobalt/graphene oxide nanocomposites. The FESEM images showed the porous flower-like structure of particles deposited on the graphene oxide sheets. The AFM images clearly showed the surface roughness and the dispersion of nanoparticles on graphene oxide sheets. Room-temperature magnetization values range from 18 emu g?1 to 167 emu g?1, depending on the applied voltage. In order to study the electrical properties of the nanocomposites, the volumetric resistivity and volumetric conductivity under different pressures and the current-voltage characteristic curves were measured. Based on the results, the nanocomposites synthesized by applying 8 V and 23 V show ohmic behavior and have the highest volumetric conductivity. The volumetric conductivity increases with increasing the pressure. The nanocomposite prepared by applying 23 V presents good structural, magnetic, and electrical properties.  相似文献   

12.
In this study, graphene oxide (GO) was chemically reduced into reduced GO (RGO) by using hydrazine and a series of waterborne RGO/poly(siloxane-urethane) (SWPU) nanocomposites with various amounts of RGO were synthesized through in-situ polymerization. Siloxane units were incorporated into the nanocomposites to cause the cross-linking reaction in polyurethane (PU) units. Changes in the structure of the nanocomposites were examined through X-ray diffractometry (XRD). The results revealed two broad peaks at 2θ?=?10° and 20°, indicating the existence of short-range ordering in the hard domains. The relative intensities of the two XRD peaks varied with the RGO content orderly. Additionally, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, hardness measurement, and thermal conductivity analysis were conducted to investigate the thermal and mechanical properties of the nanocomposites. The results suggest that the thermal decomposition temperature (Td), dynamic glass transition temperature (Tgd), tensile strength, and Young’s modulus were at their optimal levels with 0.3 wt% of RGO, and an RGO amount greater than 0.3 wt% weakened the thermal and mechanical properties of the nanocomposites. The surface morphology of the nanocomposites was determined using a scanning electron microscope, atomic-force microscope and contact angle meter. The results suggest that surface roughness and contact angle increased considerably with RGO content. In addition, the electrical and thermal conductivities of the nanocomposites increased with increasing RGO content.  相似文献   

13.
Epoxy-based nanocomposites reinforced with nonfunctionalized porous graphene (NPG), carboxylated porous graphene (CNPG), and amine-functionalized porous graphene (ANPG) were investigated with regard to mechanical properties, thermal stability, and electrical conductivity. Nanomaterials were added to the epoxy matrix in varying contents of 0.5, 1, and 2 wt %. Generally, mechanical properties were improved as a result of introducing nanomaterials into the epoxy resin. However, the amelioration of toughness was only observed in functionalized NPGs/epoxy nanocomposites. Field emission scanning electron microscopy images showed that functionalized nanomaterials induced a rougher fracture surface compared to the neat epoxy. Dynamic mechanical analysis along with differential scanning calorimetry confirmed an increment in the glass-transition temperature (Tg) of the reinforced nanocomposites. Also, they proved that functionalization made the epoxy network tougher and more flexible. The electrical conductivity and thermal stability of the epoxy resin were also improved when loaded with nanomaterials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47475.  相似文献   

14.
Polypropylene (PP) nanocomposites reinforced with graphene nanoplatelets (GNPs) were prepared via melt extrusion. A special sheet die containing with two shunt plates was designed. The relationships among the flow field of the special die, exfoliation, and dispersion morphology of the GNPs in PP and the macroscopic properties of the nanocomposites were analyzed. Flow field simulation results show that the die with shunt plates provided a high shear stress, high pressure, and high velocity. The differential scanning calorimetry, X‐ray scattering, and electron microscopy results reveal that the nanocomposites prepared by the die with the shunt plates had higher crystallinity values and higher exfoliation degrees of GNPs. The orientation of the GNPs parallel with the extrusion direction was also observed. The nanocomposites prepared by the die with shunt plates showed a higher electrical volume conductivity, thermal conductivity, and tensile properties. This indicated that the high shear stress exfoliated the GNPs effectively to a thinner layer and then enhanced the electrical, thermal, and mechanical properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44486.  相似文献   

15.
In this article polyaniline (PANI) nanocomposites containing thermally reduced graphene oxide (TRGO) were synthesized and characterized before and after thermal aging. The nanocomposites were prepared through in situ oxidative polymerization of aniline in the presence of TRGO nanoplatelets. FTIR and Raman spectroscopies, XRD, FESEM, and electrical conductivity measurements were used to characterize synthesized materials. PANI/TRGO nanocomposites showed considerably higher electrical conductivity when compared to pure PANI, which was associated with the higher electrical conductivity of TRGO and increased crystallinity of PANI in the presence of TRGO. Pure PANI and PANI/TRGO nanocomposites were thermally aged at 70, 80, 90, and 100 °C. The results showed that the characteristic time of thermal aging process is higher for PANI/TRGO nanocomposites and increases with TRGO loading, which indicates better stability of conductivity during thermal aging process. On the other hand, the characteristic time of thermal aging reduced with aging temperature and a fast decrease was observed from 80 to 90 °C. Improved resistance over thermal aging can be attributed to the barrier effect of TRGO nanoplatelets to the dopant molecules, which retards conductivity degradation in the thermal aging process. Furthermore, TRGO increases PANI crystallinity and it can also prevent crystallinity reduction during thermal aging process. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44635.  相似文献   

16.
This article presents the effect of exfoliation, dispersion, and electrical conductivity of graphene sheets onto the electrical, electromagnetic interference (EMI) shielding, and gas barrier properties of thermoplastic polyurethane (TPU) based nanocomposite films. The chemically reduced graphene (CRG) and thermally reduced/annealed graphene (TRG) having Brunauer–Emmett–Teller surface areas of 18.2 and 159.6 m2/g, respectively, when solution blended with TPU matrix using N,N-dimethylformamide as a solvent. Graphene sheets based TPU nanocomposites have been evaluated and compared for EMI shielding in Ku band, electrical conductivity, and gas barrier property. TRG/TPU nanocomposite films showed excellent gas barrier against N2 gas as compared to CRG/TPU. The EMI shielding effectiveness for neat CRG and TRG graphene sheets is found to be −80, −45 dB, respectively, at 2 mm thickness. The EMI shielding data revealed that TRG/TPU nanocomposites showed better shielding at lower concentration (10 wt %), while CRG displayed better attenuation at higher concentrations. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47666.  相似文献   

17.
Reduced graphene oxide (rGO) with various surface structures was prepared by reducing graphene oxide (GO) with hydrazine hydrate (N2H4), sodium borohydride (NaBH4) and l ‐ascorbic acid, respectively. The resulting rGO were used to fabricate rGO/polypropylene (PP) nanocomposites by a melt‐blending method. The surface structure of rGO as well as multifunctional properties of rGO/PP nanocomposites were thoroughly investigated. It was shown that rGO with highest C/O ratio could be obtained by reducing GO with N2H4. The crystallization behaviors, tensile strength, thermal conductivity and thermal stability of rGO/PP nanocomposites were significantly improved with the increase of C/O ratio of rGO. For example, with only 1 phr (parts per hundred PP) rGO reduced by N2H4, the degree of crystallinity, tensile strength, maximum heat decomposition temperature and thermal conductivity of PP nanocomposite were increased by 6.2%, 20.5%, 48.0 °C and 54.5%, respectively, compared with those of pure PP. Moreover, the thermal degradation kinetics indicated that the decomposition activation energy of rGO/PP nanocomposites could be enhanced by adding rGO with higher C/O ratio. © 2018 Society of Chemical Industry  相似文献   

18.
A series of graphene nanosheets‐filled poly(methyl methacrylate) nanocomposites (GNS/PMMA) is successfully prepared by an in situ fast polymerization method with graphene weight fractions from 0.1 to 2.0 wt %. In situ polymerization is effective in well dispersing of GNS in matrixes and suitable for both low and high content of GNS. The synthesis processes of polymer composites could be simplified and fast by using industrial grade graphene. The GNS fillers are found to disperse homogeneously in the PMMA matrix. The maximum electrical conductivity of the composites achieves 0.57 S m?1, with an extremely low percolation threshold of 0.3 wt %. The electrical conductivities are further predicted by percolation theory and found to agree well with the experimental results. The results indicate that the microstructures, thermal, electrical, and mechanical properties of PMMA polymer are significantly improved by adding a low amount of graphene nanosheets. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43423.  相似文献   

19.
A series of nanographene filled polystyrene (GPS) nanocomposites was prepared by in situ polymerization of styrene in the laboratory. The concentration of graphene was changed in the step of 0.25 wt% and a total of eight composites (including control) were prepared to obtain a threshold concentration of graphene. These composites, prepared by in situ polymerization followed by compression moulding, were characterized for their structural (using XRD), morphological (SEM), thermal (DSC, TGA, DTGA), dielectric behavior (ɛ', ɛ''') and DC conductivity. It was observed that the thermal stability as well as electrical and rheological properties of graphene‐polystyrene nanocomposites significantly improved due to the homogeneous dispersion, intercalation and exfoliation of the graphene layers in the Polystyrene matrix. It was also observed that at room temperature dielectric constant (ε′) decreased with increasing concentration of graphene and reached a minimum at a certain filler concentration of 0.25 wt% (PSG025) when frequency is kept constant. Rheological study showed an improvement in the storage modulus (G′) with incorporation of graphene as nanofiller. Loss modulus (G′) and complex viscosity (η*) also increased with increasing graphene weight percentage. Relaxation time also increased at high graphene loading because of the pseudo‐solid like behavior of polymer melt. POLYM. COMPOS., 34:2082–2093, 2013. © 2013 Society of Plastics Engineers  相似文献   

20.
In this work, graphene oxide (GO) with various oxidation degrees were synthesized by adjusting the dosage of oxidation agent based on a modified Hummers' method, and were then used for the fabrication of the styrene–butadiene rubber (SBR)/GO nanocomposites through latex coagulation method, followed by a high‐temperature cure process. The vulcanization characteristics, thermal stability, mechanical properties, thermal conductivity as well as solvent resistance of SBR/GO nanocomposites were investigated. The results indicated that various surface structures of GO due to oxidation degrees may lead to different dispersion states of GO in the rubber matrix, and thus greatly influenced the cure rate, mechanical properties as well as thermal conductivity of SBR/GO nanocomposites. The optimal (moderate) oxidation degree of GO was achieved at the oxidation agent (KMnO4)/graphite weight ratio 9/5, for which case the tensile strength, tear strength, and thermal conductivity of SBR/GO nanocomposites increased by 271.3%, 112.3%, and 28.6%, respectively, compared with those of neat SBR. In addition, the mentioned nanocomposites also showed the best solvent resistance in toluene. POLYM. ENG. SCI., 58:1409–1418, 2018. © 2017 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号