首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhancement of tensile strength, impact strength, and flexural strength of polypropylene/short glass fiber composites by treating the glass fibers with coupling agent, mixing with maleated polypropylene (MPP) for compatibilization and adhesion, and with nucleating agent for improvement of polypropylene crystallization was studied. The results showed that both the silane coupling agent and MPP enhance tensile strength, impact strength, and flexural strength. In the absence of MPP, the effect of silane coupling agent on the mechanical properties of the composites decreases in the following order: alkyl trimethoxy silane (WD‐10) > γ‐methacryloxypropyl trimethoxysilane (WD‐70) > N‐(β‐aminoethyl)‐γ‐aminopropyl trimethoxysilane (WD‐52), whereas in the presence of MPP, the order changes as follows: WD‐70 > WD‐10 > WD‐52. When the glass fibers were treated with WD‐52, 4,4‐diamino‐diphenylmethane bismaleimide (BMI) can further enhance the mechanical properties of the composite. The three kinds of strengths increase with MPP amount to maximum values at 5% MPP. As a nucleating agent, adipic acid is better than disodium phthalate in improving the mechanical properties, except for the notched impact strength. Wide‐angle X‐ray diffraction showed that the adipic acid is an α‐type nucleating agent, whereas disodium phthalate is a β‐type nucleating agent. Blending with styrene–butadiene rubber can somewhat improve the notched impact strength of the composites, but severely lowers the tensile strength and bending strength. Scanning electron micrographs of the broken surface of the composite showed greater interfacial adhesion between the glass fibers and polypropylene in the modified composite than that without modification. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1414–1420, 2005  相似文献   

2.
Silane‐grafted polypropylene manufactured by a reactive grafting process was used as the coupling agent in polypropylene/glass‐fiber composites to improve the interaction of the interfacial regions. Polypropylene reinforced with 30% by weight of short glass fibers was injection‐molded and the mechanical behaviors were investigated. The results indicate that the mechanical properties (tensile strength, tensile modulus, flexural strength, flexural modulus, and Izod impact strength) of the composite increased remarkably as compared with the noncoupled glass fiber/polypropylene. SEM of the fracture surfaces of the coupled composites shows a good adhesion at the fiber/matrix interface: The fibers are coated with matrix polymer, and a matrix transition region exists near the fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1537–1542, 1999  相似文献   

3.
Glass woven fabric/polypropylene laminates have been studied given their outstanding performance/cost ratio. Their flexural properties, mainly influenced by the adhesion between matrix and reinforcing fibers, have been investigated for systems containing maleated polypropylene (PP‐g‐MA) amounts ranging from 0% to 10% by weight. Results have shown that the presence of the compatibilizer improves both flexural modulus and strength, achieving plateau values approximately for 5 and 2 wt% of PP‐g‐MA, respectively. On the contrary, an inverse proportion between the compatibilizer content and the energy dissipated at perforation emerged from low velocity impact tests. The different dependence can be related to the failure mechanisms occurring at the fiber/matrix interface. These mechanisms are able to dissipate large amounts of energy through friction phenomena, and are pronounced when the fiber/matrix adhesion is weak. Pull‐out of fibers from the matrix has been detected, in particular, in systems containing low contents of compatibilizer and evidenced by the morphological analysis of fracture surfaces after failure. The large amount of energy dissipation allowed by the relative motion of fibers and matrix occurred before fiber breakage, as confirmed by the evaluation of the laminates ductility index. POLYM. COMPOS., 37:2452–2459, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
Mechanical properties and deformation mechanisms of polypropylene (PP)/wood fiber (WFb) composites modified with maleated polypropylene as compatibilizer and styrene-butadiene rubber (SBR) as impact modifier have been studied. The addition of maleated polypropylene to the unmodified polypropylene/wood fiber composite enhances the tensile modulus and yield stress as well as the Charpy impact strength. SBR does not cause a drop in the tensile modulus and yield strength because of the interplay between decreasing stiffness and strength by rubber modification and increasing stiffness and strength by good interfacial adhesion between the matrix and fibers. The addition of both maleated polypropylene and rubber to the polypropylene/wood fiber composite does not result in an improvement of effects based on maleated polypropylene and rubber, which includes possible synergism. The deformation mechanisms in unmodified polypropylene/wood fiber composite are matrix brittle fracture, fiber debonding and pullout. A polymeric layer around the fibers created from maleated polypropylene may undergo debonding, initiating local plasticity. Rubber particle cavitation, fiber pullout and debonding were the basic failure mechanisms of rubber-toughened polypropylene/wood fiber composite. When maleated polypropylene was added to this composite, fiber breakage and matrix plastic deformation took place. Polym. Compos. 25:521–526, 2004. © 2004 Society of Plastics Engineers.  相似文献   

5.
This article presents the results of a study of the processing and physicomechanical properties of environmentally friendly wood‐fiber‐reinforced poly(lactic acid) composites that were produced with a microcompounding molding system. Wood‐fiber‐reinforced polypropylene composites were also processed under similar conditions and were compared to wood‐fiber‐reinforced poly(lactic acid) composites. The mechanical, thermomechanical, and morphological properties of these composites were studied. In terms of the mechanical properties, the wood‐fiber‐reinforced poly(lactic acid) composites were comparable to conventional polypropylene‐based thermoplastic composites. The mechanical properties of the wood‐fiber‐reinforced poly(lactic acid) composites were significantly higher than those of the virgin resin. The flexural modulus (8.9 GPa) of the wood‐fiber‐reinforced poly(lactic acid) composite (30 wt % fiber) was comparable to that of traditional (i.e., wood‐fiber‐reinforced polypropylene) composites (3.4 GPa). The incorporation of the wood fibers into poly(lactic acid) resulted in a considerable increase in the storage modulus (stiffness) of the resin. The addition of the maleated polypropylene coupling agent improved the mechanical properties of the composites. Microstructure studies using scanning electron microscopy indicated significant interfacial bonding between the matrix and the wood fibers. The specific performance evidenced by the wood‐fiber‐reinforced poly(lactic acid) composites may hint at potential applications in, for example, the automotive and packaging industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4856–4869, 2006  相似文献   

6.
This study analyses the flexural and impact strength of polypropylene reinforced with stone ground wood pulp (SGWP) and the effect of a maleated‐polypropylene (MAPP) coupling agent on the mechanical properties of these composites. Composites prepared in the absence of the coupling agent showed a very light positive linear evolution of the flexural strength with the percentage of reinforcing fiber. In contrast, composites that included MAPP in their formulation presented highly noticeable improvements with fiber content. By applying mathematical modeling strategies, the flexural modulus has been analyzed using the Cox–Krenchel model. Similarly, the flexural and tensile strength factors for the reinforcing fiber have been defined and utterly allowed for the determination of intrinsic fiber flexural strength. POLYM. COMPOS., 34:842–848, 2013. © 2013 Society of Plastics Engineers  相似文献   

7.
An open hole flexural strength and impact energy of flax yarn‐reinforced polypropylene (PP) composites were studied in this work. Highest flexural strength and strength retention were observed for axial (06) and cross‐ply (0/90/0)s laminates, respectively, while also examining the influence of laminate lay‐up and open hole size on flexural strength. It was found that maleic anhydride‐grafted polypropylene (MAPP)‐treated composite laminates achieved marginal improvement on flexural strength for all kinds of laminate lay‐up. Off‐axial laminates (±456) showed a good strength retention for open hole laminates after MAPP treatment. The fractography study confirmed microbuckling and matrix crack propagation over the compressive and tensile side of the laminate, respectively. Furthermore, severe surface damage was detected over the tensile side of 8‐mm hole size laminates. Impact test of the flax/PP laminates showed slight improvement by MAPP treatment. High‐ and low‐impact energy was experienced for axial and off‐axial laminates. The damaged impact sample shows evidence of fiber pull‐out for untreated flax yarn reinforced laminates. POLYM. COMPOS., 34:1912–1920, 2013. © 2013 Society of Plastics Engineers  相似文献   

8.
Production and characterization of wood plastic composites (WPC) from the light fraction of municipal plastic wastes (post‐consumer) and wood processing residues (sawdust) were investigated. Composition analysis revealed the presence of polyethylene (PE) and polypropylene (PP) as the two main components of the matrix. In order to improve compatibility and adhesion between all the phases, an ethylene–octene copolymer was used to compatibilize the polymer phases and was also acting as an impact modifier, while the addition of maleated polyethylene and maleated polypropylene (MAPP) were acting as coupling agents between the polymer matrix and the wood flour. The combined effect of all the components was found to produce composites with interesting morphological (dispersion and adhesion) and mechanical properties (tension, torsion, flexion, and impact) after optimization of the additive package (blend of coupling agents). POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

9.
The desire to improve the properties of cellulose‐reinforced composites while producing them by methods as similar as possible to those used on an industrial scale is one of the driving forces in this field of research. In this work, extensive research for determining the mechanical, thermal, rheological, and physical properties of novel cellulose‐reinforced polypropylene composites containing a polyethylenimine (PEI) coupling agent was conducted. A comparison of their properties with those of reference composites without any coupling agent or containing a maleated polypropylene (MAPP) coupling agent was also carried out. The presence of the PEI coupling agent mainly gave rise to a substantial increase in the tensile and flexural strengths and elongations as well as the impact strength, heat deflection temperature (HDT), melt volume flow index, and water absorption of PEI‐containing composites in comparison with composites without any coupling agent added. However, the increases achieved in the tensile and flexural composite strengths and HDT were lower than those achieved with the MAPP coupling agent mainly for composites containing 50 wt % cellulose fibers. On the other hand, PEI‐containing composites exhibited, in most cases, larger elongations and energies required to break in tensile tests as well as larger impact strengths, melt volume flow indices, and water absorption percentages than MAPP‐containing composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
New composites based on poly(propylene) as polymer matrix and hemp strands as natural reinforcement have been developed by injection‐molding. The materials were previously mixed in a two roll mill to induce the dispersion of the fiber inside the polymer. To improve the adhesion between both components, maleated poly(propylene) was added as coupling agent, at 4% wt/wt with respect to hemp strands. The addition of this amount of this coupling agent to the formulation modified with 40 wt % of hemp strands increases the ultimate tensile strength (σt) and flexural strength (σf) up to 49 and 38%, respectively, compared with the composite without coupling agent. The interaction between the surface of hemp strands and the coupling agent was determined by FT‐IR spectroscopy assuming that a covalent bond was established, avoiding the adverse effect of the poor compatibility at the interface for this kind of composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 833–840, 2006  相似文献   

11.
Several types of functionalized polyolefins, grafted with maleic anhydride, were synthesized and used to modify the surface of fiberglass in reinforced polypropylene composites. The influence of maleated polyolefin, matrix, and compounding conditions on the interfacial bonding strength of composite were studied by measuring interfacial shear strength. The results showed that strong interactions, e.g., chemical bonding, were formed between maleated polyolefin and fiber surface. When the modified fibers were compounded with polypropylene, firm entanglements of molecular chain were formed due to the segmental interdiffusion between maleated polyolefin and matrix polypropylene. As a result, the degree of fiber‐matrix adhesion was improved. The extent of such improvement depended on the grafting degree, chain length of maleated polyolefin, and the compatibility between maleated polyolefin and matrix resin. At the same time, the compounding temperature and the cooling procedure affected the interfacial adhesion too. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1359–1365, 2000  相似文献   

12.
Hybrid composites of polypropylene (PP), reinforced with short banana and glass fibers were fabricated using Haake torque rheocord followed by compression molding with and without the presence maleic anhydride grafted polypropylene (MAPP) as a coupling agent. Incorporation of both fibers into PP matrix resulted in increase of tensile strength, flexural strength, and impact strength upto 30 wt% with an optimum strength observed at 2 wt% MAPP treated 15 wt% banana and 15 wt% glass fiber. The rate of water absorption for the hybrid composites was decreased due to the presence of glass fiber and coupling agent. The effect of fiber loading in presence of coupling agent on the dynamic mechanical properties has been analyzed to investigate the interfacial properties. An increase in storage modulus (E′) of the treated‐composite indicates higher stiffness. The loss tangent (tan δ) spectra confirms a strong influence of fiber loading and coupling agent concentration on the α and β relaxation process of PP. The nature of fiber matrix adhesion was examined through scanning electron microscopy (SEM) of the tensile fractured specimen. Thermal measurements were carried out through differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA), indicated an increase in the crystallization temperature and thermal stability of PP with the incorporation of MAPP‐treated banana and glass fiber. POLYM. COMPOS., 31:1247–1257, 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
Polypropylene/steel fiber composites were prepared and tested for mechanical, electrical, and permeability performance. To enhance adhesion of polypropylene to steel fibers, two kinds of coupling agents, maleated polypropylene wax and maleated polypropylene, were used. It was found that maleated polypropylene wax was more effective. However, as indicated by permeability measurements and scanning electron microscopy (SEM), adhesion was rather poor. Oxygen and water vapor permeabilities of the polypropylene/steel fiber composites increased with the steel fiber concentration. The lack of adhesion at the fiber-polymer interface created diffusive paths for the gas to penetrate the composite. Addition of polyamide to polypropylene caused a decrease in the permeability of the system, due to a reduction of the permeability of the matrix. The polypropylene/steel fiber composites become conductive at a volume loading of about 10 percent. At this concentration the volume resistivity of the composite is 10.8 ohm cm.  相似文献   

14.
Ink‐eliminated sludge flour (IESF), waste residue from the recycling treatments of waste paper, was utilized as a new kind of filler to reinforce polypropylene (PP) in this research work. Different coupling agents, including maleated anhydride grafted PP (MAPP), stearic acid (SA), and titanate (NDZ‐101), were used to increase the compatibility between IESF and PP. By using different measurements, the microstructure, morphology, thermal behaviors, and mechanical properties of the IESF/PP composites were investigated in detail. It was found that IESF, as a nucleation agent, not only induced the crystallization orientation of PP but also accelerate the crystallization rate of PP. Just as indicated in the experiments, the presence of IESF has shown the advantages of increasing the dimensional stability, the hardness and the flexural property, and the presence of coupling agents has a favorable effect on the improvement of dimensional stability. Moreover, the coupling agent has minor influence on the mechanical property, even causes some decrease in the impact strength. Among these three coupling agents, MAPP is found to be the best coupling agent for increasing the interfacial adhesion between IESF and PP, and the MAPP addition makes the PP composite possess the quickest crystallization rate and greatest tensile strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 513–520, 2003  相似文献   

15.
The toughened polypropylene (PP) was obtained by the blending of PP with ethylene‐propylene diene monomer (EPDM). The impact property of continuous glass mat‐reinforced polypropylene was adjusted through three ways: different toughness PPs and their blends were used as matrices, the functionalized polypropylene was added into the matrix to control the interfacial adhesion; the ductile interlayer was introduced at the fiber/matrix interphase by the grafting and crosslinking of rubber chains on fiber surface. The effect of PP toughness, interfacial adhesion, and ductile interlayer on the mechanical properties of composite systems was studied. The impact toughness of GMT increased with increasing the matrix toughness, whereas the flexural strength and modulus decreased. The good interfacial adhesion resulted in the low impact toughness. However, GMT composite with high strength, modulus, and impact toughness could be obtained by the introduction of a ductile interlayer at fiber/matrix interphase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2680–2688, 2002  相似文献   

16.
The reinforcement mechanics of viscose‐fiber‐reinforced polypropylene (PP) composites were studied. The effect of the coupling agent, maleated polypropylene (MAPP), was of special interest. The fibers, coupling agent, and PP were extruded and injection‐molded. The composition, mechanical properties, fracture morphology, and dispersion of the composites were examined. Thermogravimetric analysis showed that the fiber content in the tensile specimens varied slightly with the sample location; however, the differences in the values were within 1.0%. Scanning electron microscopy images of the fracture surfaces of the composites showed that the surfaces of the composites without MAPP were covered with fibers pulled out from the matrix. A lack of adhesion further appeared as a cracked matrix–fiber interface. A new scanning thermal microscopy method, microthermal analysis, was used to study the dispersion of the fibers in the composites. Local thermal analyses gave further information about the location of the fibers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2676–2684, 2004  相似文献   

17.
Effective interfacial adhesion between wood fibers and plastics is crucial for both the processing and ultimate performance of wood–plastic composites. Coupling agents are added to wood–plastic composites to promote adhesion between the hydrophilic wood surface and hydrophobic polymer matrix, but to date no coupling agent has been reported for PVC/wood‐fiber composites that significantly improved their performance and was also cost‐effective. This article presents the results of a study using chitin and chitosan, two natural polymers, as novel coupling agents for PVC/wood‐flour composites. Addition of chitin and chitosan coupling agents to PVC/wood‐flour composites increased their flexural strength by ~20%, their flexural modulus by ~16%, and their storage modulus by ~33–74% compared to PVC/wood‐flour composite without the coupling agent. Significant improvement in composite performance was attained with 0.5 wt% of chitosan and when 6.67 wt% of chitin was used. J. VINYL ADDIT. TECHNOL., 11:160–165, 2005. © 2005 Society of Plastics Engineers  相似文献   

18.
Two fly ash samples (one from UK, UKFA, and another from South Africa, SAFA) were washed with water and 1 M hydrochloric acid (followed by water) prior to incorporation (at 65% wt) into polypropylene homopolymer, containing an unsaturated carboxylic acid coupling agent (Lubrizol Solplus® C800) with dicumyl peroxide free radical initiator. Melt blending was achieved using a Haake Rheomix 600 mixing chamber, and composite test plaques were compression moulded. Flexural and impact testing was then carried out. Unwashed and water washed fly ash–based composites responded well to C800 modification, and flow microcalorimetry (FMC) and diffuse reflectance Fourier transform infrared spectroscopy studies confirmed strong interaction between C800 and fly ash. However, washing the fly ash with HCl led to a reduction in composite flexural and impact properties. Scanning electron microscopy imaging of the latter composite fracture surfaces revealed poor filler‐matrix adhesion, which was thought to be due to reduced interaction between C800 and HCl washed fly ash. The latter was confirmed using FMC. Reduction of C800/fly ash interaction led to a reduction in the nucleation of polypropylene (PP) crystallization and a decrease in melt flow rate. The latter may be due to a shift in locus of PP–C800 addition reactions from the interfacial region to the bulk matrix. POLYM. COMPOS., 35:698–707, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
Poly(propylene‐co‐ethylene) composites with rice husk were prepared in a corotating intermeshing twin‐screw extruder using four different coupling agents. While modified maleic anhydrides such as maleated polypropylene (MAPP) and maleated polyethylene (MAPE) are commonly used as compatibilizers to improve interfacial adhesion between lignocellulosic filler and matrix, in this study, polypropylene grafted with acid comonomer (CAPP) and high‐density polyethylene grafted with acid comonomer (CAPE) were also used. The morphologies and the thermal and mechanical properties of the composites were characterized using scanning electron microscopy, thermogravimetric analysis, differential scanning analysis, tensile and impact tests. The results indicate that the base resin of the compatibilizer is an important factor in determining the effectiveness of compatibilizers for composites. Composites with PP‐based compatibilizers are more effective than PE‐based compatibilizers due to the improved wetting of the former compatibilizer in the matrix polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
A study has been made of property optimization of a composite based on low density polyethylene and polypropylene (PP) blend matrices with talc modified by a titanate coupling agent. Analysis shows that the flexural properties improve with increasing content of both talc and polypropylene. However, the tensile moduli show a different behavior. Tensile strength is hardly affected by the filler content at PP percentages in the matrix above 50 percent. The surface modified talc gives rise to higher mechanical properties than the unmodified talc. This improvement is more noticeable as talc and PP percentages in the composite is increased. Scanning electron microscopy has shown the effect of the coupling agent at the filler/polymer matrix interphase and the greater affinity between talc and polypropylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号