共查询到20条相似文献,搜索用时 0 毫秒
1.
M. Meusel C. Baur G. Ltay A.W. Bett W. Warta E. Fernandez 《Progress in Photovoltaics: Research and Applications》2003,11(8):499-514
Procedures for measuring the spectral response of multi‐junction cells in general require variation of the bias spectrum and voltage biasing. It is shown that a refined procedure including optimization of bias spectrum and voltage is necessary to minimize a measurement artifact, which appears if the subcell under test has non‐ideal properties, such as a low shunt resistance or a low reverse breakdown voltage. This measurement artifact is often observed on measuring the spectral response of the Ge bottom cell of GaInP/Ga(In)As/Ge triple‐junction cells. The main aspect of the measurement artifact is that the response of another subcell is simultaneously measured, while at the same time the signal of the Ge subcell is too low. Additionally, the shape of the spectral response curve is influenced under certain measurement conditions. In this paper the measurement artifact is thoroughly discussed by measurement results and simulation. Based on this analysis, a detailed procedure for the spectral response measurement of multi‐junction cells is developed, specially designed to minimize such measurement artifacts. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
2.
3.
4.
5.
6.
7.
8.
微光光照强度下太阳电池应用研究 总被引:3,自引:0,他引:3
在太阳电池标准测试条件之外,定义了太阳电池室内测试条件,研究了该条件下的微光光照强度对几种常见太阳电池效率的影响和它们的光谱响应。结合各种太阳电池自身的价格因素和器件性质,得出了一些可供室内光伏产品设计人员参考的结论。 相似文献
9.
Manuel Schnabel Mariaconcetta Canino Kai Schillinger Philipp Lper Caterina Summonte Peter R. Wilshaw Stefan Janz 《Progress in Photovoltaics: Research and Applications》2016,24(9):1165-1177
Monolithic tandem cells involving a top cell with Si nanocrystals embedded in SiC (Si NC/SiC) and a c‐Si bottom cell have been prepared. Scanning electron microscopy shows that the intended cell architecture is achieved and that it survives the 1100 °C anneal required to form Si NCs. The cells exhibit mean open‐circuit voltages Voc of 900–950 mV, demonstrating tandem cell functionality, with ≤580 mV arising from the c‐Si bottom cell and ≥320 mV arising from the Si NC/SiC top cell. The cells are successfully connected using a SiC/Si tunnelling recombination junction that results in very little voltage loss. The short‐circuit current densities jsc are, at 0.8–0.9 mAcm−2, rather low and found to be limited by current collection in the top cell. However, equivalent circuit simulations demonstrate that in current‐mismatched tandem cells such as the ones studied here, higher jsc, when accompanied by decreased Voc, can arise from shunts or breakdown in the limiting cell rather than improved current collection from the limiting cell. This indicates that Voc is a better optimisation parameter than jsc for tandem cells where the limiting cell exhibits poor junction characteristics. The high‐temperature‐stable cell architecture developed in this work, coupled with simulations highlighting potential pitfalls in tandem cell analysis, provides a suitable route for optimisation of Si NC layers for photovoltaics on a tandem cell device level. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
J. J. Prez‐Lpez F. Fabero F. Chenlo 《Progress in Photovoltaics: Research and Applications》2007,15(4):303-315
In this work, results are presented concerning solar spectral irradiance measurements performed in Madrid in the wavelength range 250–2500 nm, that is, extending the spectral range far away from the wavelengths where PV semiconductors are active. These data were obtained considering a horizontal receiver surface during selected clear days covering the four seasons of the year. PV materials having different spectral responses (m‐Si, a‐Si, CIGS, CdTe) have been considered to calculate spectral factors (SF) taking as reference the standard solar spectrum AM1.5 defined in standard IEC 60904‐3. From these SFs, the influence of natural solar spectral variations in PV conversion has been established. It is shown, for example, that PV technologies based on a‐Si are highly favored, from the spectral point of view, in spring–summer compared to other technologies having broader spectral responses, which are more favored in autumn–winter. From the experimental measured solar spectra, we have calculated Weighed Solar Spectra (WSS) corresponding to the four seasons of the year and also to the whole year. The WSS represents, for a certain period of time, the solar spectrum weighed over the irradiance level. SFs have been calculated for different WSSs showing spectral gains for the four PV materials during almost the full year. Otherwise, it is also shown in this work how the near‐IR part of the solar spectrum affects the evaluation of the solar resource as a whole when reference solar cells made of different PV materials are used. For typical m‐Si, a‐Si, CIGS, and CdTe solar cells, the ratio of Isc over global irradiance is not constant along a given day showing variations that depend on the season and on the PV material considered. © 2006 John Wiley & Sons, Ltd. 相似文献
11.
Cyril Leon Sylvain Le Gall Marie‐Estelle Gueunier‐Farret Aurore Brzard‐Oudot Alexandre Jaffre Nicolas Moron Laura Vauche Karim Medjoubi Elias Veinberg Vidal Christophe Longeaud Jean‐Paul Kleider 《Progress in Photovoltaics: Research and Applications》2020,28(6):601-608
This paper presents a simple and nondestructive method to determine doping densities and built‐in potential of subcells by adapting the well‐known capacitance‐voltage (C‐V) technique to two‐terminal (2 T) tandem solar cells. Because of the electrical coupling between the two subcells in a monolithic 2 T tandem solar cell, the standard method using a Mott‐Schottky plot (1/C2 vs V) cannot be applied. Using numerical modeling, it is demonstrated that, by under chosen illumination conditions where only one subcell can absorb the light, it is possible to explore the bias dependence of the capacitance and to extract the parameters of the other subcell if the appropriate frequency conditions are present. This method is experimentally applied to an AlGaAs/Si tandem cell, and parameters of both AlGaAs and Si cells are extracted. Finally, the validity of that method is assessed by the very good agreement obtained when comparing the values extracted from our measurements on the tandem cell to those extracted from measurements on isotype cells and to the values targeted during the fabrication process of the AlGaAs/Si tandem solar cell. 相似文献
12.
采用宽带隙有机材料PTB7‑Th: PCBM作为前电池,窄带隙有机材料PTB7‑Th: IEICO‑4F作为后电池,MoO/Au/ZnO薄膜作为中间连接层制备叠层电池。在本研究中,利用真空热蒸发和磁控溅射镀膜的方法制备了MoO/Au/ZnO薄膜,不仅具有高透光率,而且有很好的抗溶剂侵蚀性能。此外,为了进一步降低在旋涂后电池活性层时溶液对前电池的侵蚀,采用低沸点的氯仿作为后电池活性层材料的溶剂,并利用动态旋涂成膜的方法,减少溶剂挥发时间。最后获得了效率为9.35%的有机叠层太阳能电池,与单结有机太阳能电池相比,拥有更高的效率,开路电压高达1.4 V。研究表明:MoO/Au/ZnO薄膜在制备叠层太阳能电池中具有很大的优势。 相似文献
13.
14.
Enrique Barrign Pilar Espinet‐Gonzlez Yedileth Contreras Ignacio Rey‐Stolle 《Progress in Photovoltaics: Research and Applications》2015,23(11):1597-1607
The electrical and optical coupling between subcells in a multijunction solar cell affects its external quantum efficiency (EQE) measurement. In this study, we show how a low breakdown voltage of a component subcell impacts the EQE determination of a multijunction solar cell and demands the use of a finely adjusted external voltage bias. The optimum voltage bias for the EQE measurement of a Ge subcell in two different GaInP/GaInAs/Ge triple‐junction solar cells is determined both by sweeping the external voltage bias and by tracing the I–V curve under the same light bias conditions applied during the EQE measurement. It is shown that the I–V curve gives rapid and valuable information about the adequate light and voltage bias needed, and also helps to detect problems associated with non‐ideal I–V curves that might affect the EQE measurement. The results also show that, if a non‐optimum voltage bias is applied, a measurement artifact can result. Only when the problems associated with a non‐ideal I–V curve and/or a low breakdown voltage have been discarded, the measurement artifacts, if any, can be attributed to other effects such as luminescent coupling between subcells. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
15.
16.
通过提高发射区的方块电阻和优化发射区的磷杂质浓度纵向分布,制备了性能优良的单晶硅太阳电池。I-V测量分析表明:高表面活性磷杂质浓度浅结发射区太阳电池短路电流密度、开路电压和填充因子分别提高了0.32mA/cm2,1.19mV和0.22%,因此转换效率提高了0.22%。内量子效率分析表明:高表面活性磷杂质浓度浅结发射区太阳电池短路电流密度的提高是由于短波光谱响应增强了。SEM分析表明:高表面活性磷杂质浓度浅结发射区太阳电池在发射区硅表面沉积的Ag晶粒分布数量更多、一致性更好,从而更容易收集光生电流传输到Ag栅线,改善了太阳电池的性能。 相似文献
17.
Dominique J. Wehenkel Koen H. HendriksMartijn M. Wienk René A.J. Janssen 《Organic Electronics》2012,13(12):3284-3290
The spectral responsivity, S, and the related spectrally resolved photon-to-electron external quantum efficiency, EQE, are standard device characteristics of organic solar cells and can be used to determine the short-circuit current density and power conversion efficiency under standardized test conditions by integrating over the spectral irradiance of the solar emission. However, in organic solar cells S and EQE can change profoundly with light intensity as a result of processes that vary non-linearly with light intensity such as bimolecular recombination of electrons and holes or space charge effects. To determine the S under representative solar light conditions, it is common to use modulated monochromatic light and lock-in detection in combination with simulated solar bias light to bring the cell close to 1 sun equivalent operating conditions. In this paper we demonstrate analytically and experimentally that the S obtained with this method is in fact the differential spectral responsivity, DS, and that the real S and the experimental DS can differ significantly when the solar cells exhibit loss processes that vary non-linearly with light intensity. In these cases the experimental DS will be less than the real S. We propose a new, simple, experimental method to more accurately determine S and EQE under bias illumination. With the new method it is possible to accurately estimate the power conversion efficiency of organic solar cells. 相似文献
18.
The computer program AMPS-1D(analysis of microelectronic and photonic structures) has been employed to simulate the performance of the a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cell at the radiation of AM1.5G(100 mW/cm2/ and room temperature. Firstly, three sub-cells with band gaps of 1.8, 1.6 and 1.4 eV are simulated, respectively. The simulation results indicate that the density of defect states is an important factor, which affects the open circuit voltage and the filling factor of the solar cell. The two-step current matching method and the control variate method are employed in the simulation. The results show that the best solar cell performance would be achieved when the intrinsic layer thickness from top to bottom is set to be 70, 180 and 220 nm, respectively. We also optimize the tunnel-junction structure of the solar cell reasonably, the simulation results show that the open circuit voltage, filling factor and conversion efficiency are all improved and the S-shape current density–voltage curve disappears during optimizing the tunnel-junction structure. Besides, the diagram of the energy band and the carrier recombination rate are also analyzed. Finally, our simulation data are compared to the experimental data published in other literature. It is demonstrated that the numerical results agree with the experimental ones very well. 相似文献
19.
Lin Zhu Kan‐Hua Lee Masafumi Yamaguchi Hidefumi Akiyama Yoshihiko Kanemitsu Kenji Araki Nobuaki Kojima 《Progress in Photovoltaics: Research and Applications》2019,27(11):971-977
Quantum dot (QD) solar cells have drawn much attention in research because of their tunable band gap and potential to realize many novel concepts, such as intermediate transitions. However, high nonradiative recombination rates in the QD layer stand in the way of realizing high‐efficiency QD solar cells. In this paper, the efficiency potential of QD solar cells is discussed based on external radiative efficiency (ERE), open‐circuit voltage loss, fill factor loss, and nonradiative recombination loss via current‐voltage characteristics in a detailed balance model. The intrinsic loss of QD solar cells substantially increases with increasing binding energy and volume density of the QDs. The ERE of QD solar cells decreases with increasing binding energy and volume density of the QDs due to nonradiative recombination. 相似文献
20.
设计良好的减反膜系,提高太阳电池的光电转换效率是太阳电池研制中的一个重要问题.文章从减反膜理论出发,利用计算机软件模拟分析,获得了单层膜、双层膜系反射率百分比与波长的关系,并给出了具体入射波长(即632.8 nm、800 nm)条件下膜的最佳厚度.采用PC1D软件模拟了覆盖减反膜的单晶硅电池的I-V曲线,证实电池转换效率大大提高.研究结果可应用于太阳电池的设计中. 相似文献