首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin‐film Si solar cells employ a back reflector (BR) for a more efficient use of the long wavelength light. Here, we have carried out a cross evaluation of metal (Ag‐based) and dielectric (white paint‐based) BR designs. Conclusive results have been reached regarding the most suitable BR type depending on the front electrode morphology, both with crater‐like and pyramidal texture. The ZnO/Ag BR is found to be optically more efficient because of improved light trapping, although the gain tends to vanish for rougher front electrodes. Thanks to non‐conventional Raman intensity measurements, this dependence on the front texture has been linked to the different weight of front and back interfaces in the light trapping process for the different morphologies. With rougher substrates, because the minor optical gain is accompanied by sputter‐induced electronic deterioration of the solar cell during the ZnO buffer layer deposition, the white paint‐based BR design is preferred. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
To further increase the efficiency of multijunction thin‐film silicon (TF‐Si) solar cells, it is crucial for the front electrode to have a good transparency and conduction, to provide efficient light trapping for each subcell, and to ensure a suitable morphology for the growth of high‐quality silicon layers. Here, we present the implementation of highly transparent modulated surface textured (MST) front electrodes as light‐trapping structures in multijunction TF‐Si solar cells. The MST substrates comprise a micro‐textured glass, a thin layer of hydrogenated indium oxide (IOH), and a sub‐micron nano‐textured ZnO layer grown by low‐pressure chemical vapor deposition (LPCVD ZnO). The bilayer IOH/LPCVD ZnO stack guarantees efficient light in‐coupling and light trapping for the top amorphous silicon (a‐Si:H) solar cell while minimizing the parasitic absorption losses. The crater‐shaped micro‐textured glass provides both efficient light trapping in the red and infrared wavelength range and a suitable morphology for the growth of high‐quality nanocrystalline silicon (nc‐Si:H) layers. Thanks to the efficient light trapping for the individual subcells and suitable morphology for the growth of high‐quality silicon layers, multijunction solar cells deposited on MST substrates have a higher efficiency than those on single‐textured state‐of‐the‐art LPCVD ZnO substrates. Efficiencies of 14.8% (initial) and 12.5% (stable) have been achieved for a‐Si:H/nc‐Si:H tandem solar cells with the MST front electrode, surpassing efficiencies obtained on state‐of‐the‐art LPCVD ZnO, thereby highlighting the high potential of MST front electrodes for high‐efficiency multijunction solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Silver nanowire (Ag NW) thin films are investigated as top electrodes in semitransparent inverted organic solar cells. The performance of semitransparent poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) organic solar cells with Ag NW top electrode layers is found to match very closely the performance of reference devices based on thermally evaporated, highly reflective metal silver top electrodes. The optical losses of the semitransparent electrodes are investigated in detail and analyzed in terms of transmission, scattering, and reflection losses. The impact on an external back reflector is shown to increase the light harvesting efficiency of optically thin devices. Further analysis of transparent devices under illumination from the indium tin oxide (ITO) backside and through the Ag NW front electrode open the possibility to gain deep insight into the vertical microstructure related devices performance. Overall, Ag NW top electrodes are established as a serious alternative to TCO based electrodes. Semitransparent devices with efficiencies of over η = 2.0% are realized.  相似文献   

4.
Substrate configuration allows for the deposition of thin film silicon (Si) solar cells on non‐transparent substrates such as plastic sheets or metallic foils. In this work, we develop processes compatible with low Tg plastics. The amorphous Si (a‐Si:H) and microcrystalline Si (µc‐Si:H) films are deposited by plasma enhanced chemical vapour deposition, at very high excitation frequencies (VHF‐PECVD). We investigate the optical behaviour of single and triple junction devices prepared with different back and front contacts. The back contact consists either of a 2D periodic grid with moderate slope, or of low pressure CVD (LP‐CVD) ZnO with random pyramids of various sizes. The front contacts are either a 70 nm thick, nominally flat ITO or a rough 2 µm thick LP‐CVD ZnO. We observe that, for a‐Si:H, the cell performance depends critically on the combination of thin flat or thick rough front TCOs and the back contact. Indeed, for a‐Si:H, a thick LP‐CVD ZnO front contact provides more light trapping on the 2D periodic substrate. Then, we investigate the influence of the thick and thin TCOs in conjunction with thick absorbers (µc‐Si:H). Because of the different nature of the optical systems (thick against thin absorber layer), the antireflection effect of ITO becomes more effective and the structure with the flat TCO provides as much light trapping as the rough LP‐CVD ZnO. Finally, the conformality of the layers is investigated and guidelines are given to understand the effectiveness of the light trapping in devices deposited on periodic gratings. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Thin‐film silicon solar cells often rely on a metal back reflector separated from the silicon layers by a thin rear dielectric as a back reflector (BR) design. In this work, we aim to obtain a better insight into the influence of the rear‐dielectric/Ag BR design on the optical performance of hydrogenated microcrystalline silicon (µc‐Si:H) solar cells. To allow the application of a large variety of rear dielectrics combined with Ag BRs of diverse topographies, the solar cell is equipped with a local electrical contact scheme that enables the use of non‐conductive rear dielectrics such as air or transparent liquids of various refractive indices n. With this approach, detached Ag BRs having the desire surface texture can be placed behind the same solar cell, yielding a direct and precise evaluation of their impact on the optical cell performance. The experiments show that both the external quantum efficiency and the device absorptance are improved with decreasing n and increasing roughness of the BR. Calculations of the angular intensity distribution of the scattered light in the µc‐Si:H are presented. They allow for establishing a consistent picture of the light trapping in the solar cell. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This study reports the inkjet printing of Ag front contacts on Aluminum doped Zinc Oxide (AZO)/intrinsic Zinc Oxide (i‐ZnO)/CdS/Cu(In1−xGax)Se2 (CIGS)/Mo thin film photovoltaic cells. The printed Ag contacts are being developed to replace the currently employed evaporated Ni/Al bi‐layer contacts. Inkjet deposition conditions were optimized to reduce line resistivity and reduce contact resistance to the Al:ZnO layer. Ag lines printed at a substrate temperature of 200°C showed a line resistivity of 2.06 µΩ · cm and a contact resistance to Al:ZnO of 8.2 ± 0.2 mΩ · cm2 compared to 6.93 ± 0.3 mΩ · cm2 for thermally evaporated contacts. These deposition conditions were used to deposit front contacts onto high quality CIGS thin film photovoltaic cells. The heating required to print the Ag contacts caused the performance to degrade compared to similar devices with evaporated Ni/Al contacts that were not heated. Devices with inkjet printed contacts showed 11.4% conversion efficiency compared to 14.8% with evaporated contacts. Strategies to minimize heating, which is detrimental for efficiency, during inkjet printing are proposed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The incorporation of an electron reflector is a proposed strategy to improve the open‐circuit voltage of CdTe solar cells. An electron reflector is a conduction‐band barrier that can effectively reduce electron recombination at the back surface. In this work, the electron‐reflector strategy is numerically applied to a thin‐film CdTe record‐cell baseline model (efficiency = 16.5%). Simulation shows that to have the optimal effect from an electron reflector, the CdTe thickness should be on the order of 1 µm, or slightly lower if the optical reflection at the back surface can be enhanced. Efficiency above 19% should be achievable with a 0.2‐eV electron reflector and currently achievable parameters (1014‐cm−3 hole density and 1‐ns lifetime). Moreover, efficiency above 20% should be possible at a 1‐µm absorber layer if large optical back reflection can also be achieved. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A miniature diaphragm pressure transducer having sensitivity to acoustic signals at the level of conversational speech has been fabricated by combining micromachining procedures (to produce a thin silicon-nitride diaphragm) with ZnO thin-film processing. The sensor consists of a patterned ZnO layer (which acts as a piezoelectric transducer) deposited on a thin square micromachined diaphragm made of LPCVD silicon nitride. The diaphragm, 2 µm in thickness, is the thinnest yet reported for a piezoelectric readout structure of relatively large area (3 × 3 mm2). The transducer shows an unamplified response of roughly 50 µV/µbar when excited by sound waves at 1 kHz with the variation of the sensitivity from 20 Hz to 4 kHz being approximately 9 dB. These results are obtained using a 0.1-mm-wide annular pattern that measures 3.6 mm in circumference.  相似文献   

9.
We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3‐hexylthiophene) and [6,6]‐phenyl C61 butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15‐nm silver (Ag) rear electrode is 1.98% under AM 1.5‐G illumination through the indium‐tin‐oxide side of the front anode at 100 mW/cm2 with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers.  相似文献   

10.
A systematic investigation of the nanoparticle‐enhanced light trapping in thin‐film silicon solar cells is reported. The nanoparticles are fabricated by annealing a thin Ag film on the cell surface. An optimisation roadmap for the plasmon‐enhanced light‐trapping scheme for self‐assembled Ag metal nanoparticles is presented, including a comparison of rear‐located and front‐located nanoparticles, an optimisation of the precursor Ag film thickness, an investigation on different conditions of the nanoparticle dielectric environment and a combination of nanoparticles with other supplementary back‐surface reflectors. Significant photocurrent enhancements have been achieved because of high scattering and coupling efficiency of the Ag nanoparticles into the silicon device. For the optimum light‐trapping scheme, a short‐circuit current enhancement of 27% due to Ag nanoparticles is achieved, increasing to 44% for a “nanoparticle/magnesium fluoride/diffuse paint” back‐surface reflector structure. This is 6% higher compared with our previously reported plasmonic short‐circuit current enhancement of 38%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Silicon based thin tandem solar cells were fabricated by plasma enhanced chemical vapor deposition (PECVD) in a 30 × 30 cm2 reactor. The layer thicknesses of the amorphous top cells and the microcrystalline bottom cells were significantly reduced compared to standard tandem cells that are optimized for high efficiency (typically with a total absorber layer thickness from 1.5 to 3 µm). The individual absorber layer thicknesses of the top and bottom cells were chosen so that the generated current densities are similar to each other. With such thin cells, having a total absorber layer thickness varying from 0.5 to 1.5 µm, initial efficiencies of 8.6–10.7% were achieved. The effects of thickness variations of both absorber layers on the device properties have been separately investigated. With the help of quantum efficiency (QE) measurements, we could demonstrate that by reducing the bottom cell thickness the top cell current density increased which is addressed to back‐reflected light. Due to a very thin a‐Si:H top cell, the thin tandem cells show a much lower degradation rate under continuous illumination at open circuit conditions compared to standard tandem and a‐Si:H single junction cells. We demonstrate that thin tandem cells of around 550 nm show better stabilized efficiencies than a‐Si:H and µc‐Si:H single junction cells of comparable thickness. The results show the high potential of thin a‐Si/µc‐Si tandem cells for cost‐effective photovoltaics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Ni/Ag/Ti/Au金属系反射镜电极广泛用于GaN基垂直结构发光二极管(LED)的传统制造工艺.这种电极需要进行高温长时间整体退火才能获得高质量的欧姆接触,但对电极的反射率和器件性能影响较大.介绍了一种新工艺方法,该方法将电极分解为接触层和反射层,降低反射层经历的退火温度和时间,获得了拥有良好的欧姆接触特性和高反射率的反射镜电极,解决了传统电极光学性能和电学性能相互制约的问题.首先生长极薄的Ni/Ag作为接触层,对接触层进行高温长时间退火后再生长厚层Ag作为反射层,之后再进行一次低温退火.使得对反射起主要作用的反射层免于高温长时间退火,相较于传统Ni/Ag/Ti/Au电极,该方法在获得更优良的欧姆接触的同时,提升了电极的反射率.在氧气氛围下进行500℃接触层退火3 min,400℃整体退火1 min后,电极的比接触电阻率为1.7×l0-3Ω·cm2,同时在450 nm处反射率为93%.  相似文献   

13.
Short wave infrared (SWIR) devices have been fabricated using Rockwell’s double layer planar heterostructure (DLPH) architecture with arsenic-ion implanted junctions. Molecular beam epitaxially grown HgCdTe/CdZnTe multilayer structures allowed the thin, tailored device geometries (typical active layer thickness was ∼3.5 μm and cap layer thickness was ∼0.4 μm) to be grown. A planar-mesa geometry that preserved the passivation advantages of the DLPH structure with enhanced optical collection improved the performance. Test detectors showed Band 7 detectors performing near the radiative limit (∼3-5X below theory). Band 5 detector performance was ∼4-50X lower than radiative limited performance, apparently due to Shockley-Hall-Read recombination. We have fabricated SWIR HgCdTe 256 × 12 × 2 arrays of 45 um × 45 μm detector on 45 μm × 60 μm centers and with cutoff wavelength which allows coverage of the Landsat Band 5 (1.5−1.75 μm) and Landsat Band 7 (2.08−2.35 μm) spectral regions. The hybridizable arrays have four subarrays, each having a different detector architecture. One of the Band 7 hybrids has demonstrated performance approaching the radiative theoretical limit for temperatures from 250 to 295K, consistent with test results. D* performance at 250K of the best subarray was high, with an operability of ∼99% at 1012 cm Hz1/2/W at a few mV bias. We have observed 1/f noise below 8E-17 AHz 1/2 at 1 Hz. Also for Band 7 test structures, Ge thin film diffractive microlenses fabricated directly on the back side of the CdZnTe substrate showed the ability to increase the effective collection area of small (nominally <20 μm μm) planar-mesa diodes to the microlens size of 48 urn. Using microlenses allows array performance to exceed 1-D theory up to a factor of 5.  相似文献   

14.
Electrically conducting aluminum (Al)‐doped ZnO nanorods (NRs) film has been introduced as an anti‐reflective (AR) layer for effective light trapping in chalcogenide thin‐film solar cells. Results indicate that the Al‐doping significantly reduced the electrical contact resistance between the Ag top electrode and the AR layer. The Al‐doped ZnO NRs exhibited low average reflectance (4.5%) over the entire visible and near‐infrared range, and changed the nature of electrical contact between the Ag electrode and the AR layer from Schottky to Ohmic. Finally, the CuInS2 solar cell coated with the Al‐doped ZnO NRs exhibited huge enhancement in photovoltaic efficiency from 9.57% to 11.70% due to the lowering series resistance and the increase in the short‐circuit current density, when compared with that of a solar cell without the AR layer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Fully solution‐processed Al‐doped ZnO/silver nanowire (AgNW)/Al‐doped ZnO/ZnO multi‐stacked composite electrodes are introduced as a transparent, conductive window layer for thin‐film solar cells. Unlike conventional sol–gel synthetic pathways, a newly developed combustion reaction‐based sol–gel chemical approach allows dense and uniform composite electrodes at temperatures as low as 200 °C. The resulting composite layer exhibits high transmittance (93.4% at 550 nm) and low sheet resistance (11.3 Ω sq‐1), which are far superior to those of other solution‐processed transparent electrodes and are comparable to their sputtered counterparts. Conductive atomic force microscopy reveals that the multi‐stacked metal‐oxide layers embedded with the AgNWs enhance the photocarrier collection efficiency by broadening the lateral conduction range. This as‐developed composite electrode is successfully applied in Cu(In1‐x,Gax)S2 (CIGS) thin‐film solar cells and exhibits a power conversion efficiency of 11.03%. The fully solution‐processed indium‐free composite films demonstrate not only good performance as transparent electrodes but also the potential for applications in various optoelectronic and photovoltaic devices as a cost‐effective and sustainable alternative electrode.  相似文献   

16.
An effective method for depositing highly transparent and conductive ultrathin silver (Ag) electrodes using minimal oxidation is reported. The minimal oxidation of Ag layers significantly improves the intrinsic optical and structural properties of Ag without any degradation of its electrical conductivity. Oxygen‐doped Ag (AgOx) layers of thicknesses as low as 6 nm exhibit completely 2D and continuous morphologies on ZnO films, smaller optical reflections and absorbances, and smaller sheet resistances compared with those of discontinuous and granular‐type Ag layers of the same thickness. A ZnO/AgOx/ZnO (ZAOZ) electrode using an AgOx (O/Ag = 3.4 at%) layer deposited on polyethylene terephthalate substrates at room temperature shows an average transmittance of 91%, with a maximum transmittance of 95%, over spectral range 400?1000 nm and a sheet resistance of 20 Ω sq?1. The average transmittance value is increased by about 18% on replacing a conventional ZnO/Ag/ZnO (ZAZ) electrode with the ZAOZ electrode. The ZAOZ electrode is a promising bottom transparent conducting electrode for highly flexible inverted organic solar cells (IOSCs), and it achieves a power conversion efficiency (PCE) of 6.34%, whereas an IOSC using the ZAZ electrode exhibits a much lower PCE of 5.65%.  相似文献   

17.
Despite the ever‐growing demand for Li metals as next‐generation Li battery electrodes, little attention has been paid to their oxidation stability, which must be achieved for practical applications. Here, a new class of printable solid electrolyte interphase mimic (pSEI) for antioxidative Li metal electrodes is presented. The pSEI (≈1 µm) is directly fabricated on a thin Li metal electrode (25 µm) by processing solvent‐free, UV polymerization‐assisted printing, exhibiting its manufacturing simplicity and scalability. The pSEI is rationally designed to mimic a typical SEI comprising organic and inorganic components, in which ethoxylated trimethylolpropane triacrylate and diallyldimethylammonium bis(trifluoromethanesulfonyl)imide are introduced as an organic mimic (acting as a moisture‐repellent structural framework) and inorganic mimic (allowing facile Li‐ion transport/high Li+ transference number), respectively. Driven by the chemical/architectural uniqueness, the pSEI enables the thin Li metal electrode to show exceptional antioxidation stability and reliable full cell performance after exposure to humid environments.  相似文献   

18.
During the fabrication of gate electrodes by Ag ink screen-printing combined with a wet-etching process, the effects of the Ag content on the geometrical and electrical characteristics such as the thickness and surface roughness of gate electrode, step coverage with the gate dielectric, leakage current associated with the step coverage, and the electrical performance of organic thin film transistors (OTFTs) were investigated. An increase of Ag content resulted in the thick and densely-packed Ag electrode, which had a stable and excellent conductivity. But, the large thickness of Ag electrode caused the worse step coverage of PVP (polyvinylphenol) dielectric layer on the edge of the Ag gate electrode, therefore, for Ag contents more than 40 wt.%, MIM (metal-insulator-metal) devices and OTFTs with the Ag gate electrodes had very large leakage current (>10−4 A/cm2) and off-state current (>∼19 pA/μm) due to the poor step coverage of PVP dielectric layers, respectively. Finally, we found that an Ag content of 20-30 wt.% was suitable for the screen-printed etched gate electrode of OTFTs using Ag ink. This range generated a mobility of 0.18 cm2/V s, an on/off current of 5 × 106, and an off-state current of 0.002 pA/μm, which are suitable to drive e-paper.  相似文献   

19.
The areal energy density of on‐chip micro‐supercapacitors should be improved in order to obtain autonomous smart miniaturized sensors. To reach this goal, high surface capacitance electrode (>100 mF cm?2) has to be produced while keeping low the footprint area. For carbide‐derived carbon (CDC) micro‐supercapacitors, the properties of the metal carbide precursor have to be fine‐tuned to fabricate thick electrodes. The ad‐atoms diffusion process and atomic peening effect occurring during the titanium carbide sputtering process are shown to be the key parameters to produce low stress, highly conductive, and thick TiC films. The sputtered TiC at 10?3 mbar exhibits a high stress level, limiting the thickness of the TiC‐CDC electrode to 1.5 µm with an areal capacitance that is less than 55 mF cm?2 in aqueous electrolyte. The pressure increase up to 10?2 mbar induces a clear reduction of the stress level while the layer thickness increases without any degradation of the TiC electronic conductivity. The volumetric capacitance of the TiC‐CDC electrodes is equal to 350 F cm?3 regardless of the level of pressure. High values of areal capacitance (>100 mF cm?2) are achieved, whereas the TiC layer is relatively thick, which paves the way toward high‐performance micro‐supercapacitors.  相似文献   

20.
Transparent electrodes cannot easily be created with high transmittance and low sheet resistance simultaneously, although some optoelectronic devices, such as large organic light-emitting diode (OLED) displays and lightings, require very low resistive transparent electrodes. Here, we propose a very low resistive transparent electrode (~1.6 Ω/sq) with a high transmittance (~75%) for OLED devices, the transmittance level of which represents the highest reported value to date given such a low sheet resistance level. It consists of a stacked silver (Ag)/zinc oxide (ZnO)/Ag multilayer covered by high refractive index dielectric layers. The proposed multilayer electrode with optimal layer thicknesses has a high and wide spectral transmittance peak due to interference. The low sheet resistance is a result of two Ag layers connected via the sandwiched ZnO layer. In addition to its low sheet resistance coupled with high transmittance, the proposed multilayer electrode has good flexibility. An OLED with an anode of the stacked Ag/ZnO/Ag multilayer shows performance comparable to that of an anode of indium tin oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号