首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silanized vapor‐grown carbon nanofiber/epoxy (silanized‐VGCNF/EP) shape memory polymer (SMP) nanocomposites are successfully fabricated by using a composite molding technology. The surface functionalization of VGCNF is performed using an acid treatment followed by a reaction with silane. The oxidation as well as silanization of VGCNF and silanized‐VGCNF/EP nanocomposites are systematically and explicitly characterized using various analytical methods. The influence of the silane‐functionalized VGCNF on the properties of VGCNF/EP nanocomposites is investigated using field emission scanning electronic microscopy (FE‐SEM) and a dynamic mechanical analysis (DMA). The shape memory properties of the silanized‐VGCNF/EP nanocomposites are evaluated by a fold‐deploy shape memory test. The results reveal that the silanized‐VGCNF is preferably dispersed in the epoxy resin matrix. Furthermore, the glass transition temperature of silanized‐VGCNF/EP nanocomposites is enhanced, and the shape memory properties of the silanized‐VGCNF/EP nanocomposites are significantly improved. POLYM. COMPOS., 35:412–417, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
Shape memory (SM) silica/epoxy composite foams were successfully synthesized via latex technology and prepared without blowing agent addition. Silica was synthesized via tetraethoxysilane (TEOS) hydrolysis. Silica/epoxy foams were obtained from the TEOS solution and water‐borne epoxy mixtures after freeze‐drying and foaming in the presence of residual moisture as the blowing agent under a vacuum at 110°C. The morphologies of the resulting foams were evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Compression and thermo‐mechanical cycle tests were performed to measure the mechanical and SM properties of the foams. Experimental results indicated that the micrographs and mechanical properties of the foams were closely related to freeze‐drying time. The final composite foams exhibited high shape recovery and fixity ratios and could maintain both properties at more than 90% even after five thermo‐mechanical cycles. The properties obtained in the epoxy foams may offer new opportunities for their use in future structural applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42599.  相似文献   

3.
The friction properties of vapor‐grown carbon nanofibers (VGCFs) reinforced natural rubber (NR) composites were investigated with the ball‐on‐plate sliding test. A mechanism was proposed on the basis of the viscoelastic properties, morphology and hardness of the composites, determined using dynamic mechanical analysis, optical microscopy, field emission scanning electron microscopy, transmission electron microscopy and a hardness‐testing device. The friction behavior of NR/VGCF composites showed three different stages: an increment trend at first stage, a decrement trend at second stage and a stable state at third stage. The peak values of friction coefficient were similar, and the peak shifted to a smaller cycle with increased VGCF content. The eventual friction coefficient decreased with increased VGCF content due to accelerated formation of abrasion patterns in the NR/VGCF composites. Moreover, the arranged VGCFs contributed to the self‐lubrication of NR/VGCF composites and the NR/20 wt% VGCF composite had the smallest friction coefficient. POLYM. COMPOS., 2011.© 2011 Society of Plastics Engineers  相似文献   

4.
Shape memory composites of hyperbranched polyurethane (HBPU) and acid‐treated multi‐walled carbon nanotubes (MWNTs) were prepared using an in situ polymerization method. HBPUs with different hard segments contents were synthesized via the A2 + B3 approach using poly(ethylene glycol) (PEG) as a soft segment, 4,4′‐methylene bis(phenylisocynate), castor oil, and 1,4‐butanediol as hard segment. Compared to HBPU, the HBPU/MWNT composites showed faster shape recovery and double the shape recovery stress in the thermomechanical shape memory test, which was dependent on the MWNTs content and HBPU hard segment content. The water‐responsive shape memory effect of HBPU/MWNT composites was considered to result from the combined contribution of hydrophilic PEG and well dispersed MWNTs in highly branched HBPU molecules. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
In this work, novel thermoresponsive shape memory composites based on glass fiber and nanosilica‐modified liquid crystalline epoxies (LCEs) with lateral substituent were prepared and characterized. According to the comprehensive analysis of polarized optical microscopy, wide‐angle X‐ray diffraction measurements, and tan δ data, the orientation of mesogen units were hindered by the introduction of nanosilica and lateral substituents of liquid crystalline epoxies, so that additional physical cross‐links except for similar chemical cross‐links emerged with the introduction of surface‐treated nanosilica. And the increased cross‐links could enhance the shape memory properties of the composites which could recover to their original state quickly in a time shorter than 30 s with high shape fixing ratios (>96%) and high shape recovery ratios (>98%), which indicated the composites could be applied into self‐deployable structural materials. Moreover, the reinforcement in the dynamic storage moduli, tensile modulus, and the tensile strength and shape memory properties indicated that glass fiber and nanosilica‐modified shape memory liquid crystalline epoxy composites could be high‐performance composites and could be used as new candidates for aerospace smart materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42616.  相似文献   

6.
Epoxy/vapor grown carbon nanofiber composites (VGCF) with different proportions of VGCF were fabricated by the in situ process.The VGCFs were well dispersed in both of the low and high viscosity epoxy matrices, although occasional small aggregates were observed in a high viscosity epoxy of 20 wt.%. The dynamic mechanical behavior of the nanocomposite sheets was studied. The storage modulus and the glass transition temperature (Tg) of the polymer were increased by the incorporation of VGCFs.The electrical and mechanical properties of the epoxy-VGCFs nanocomposite sheets with different weight percentages of VGCFs were discussed. The results were that both had maximum tensile strength and Young’s modulus at 5 wt.% for both materials and reduced the fracture strain with increasing filler content. The electrical resistivity was decreased with the addition of filler content. Mechanical, electrical and thermal properties of low viscosity epoxy composites were resulted better than that of the high viscosity composites.  相似文献   

7.
Vapor‐grown carbon fibers (VGCFs) were exposed to a series of chemical treatments and to electrochemical deposition of copper to modify their surface conditions and alter their electrical properties. The fibers were then mixed with polypropylene using a Banbury‐type mixer obtaining composites up to 5 wt % VGCFs. Rheological, electrical, and mechanical properties were evaluated and compared to unfilled polypropylene processed in a similar manner. The composites made with HNO3‐treated VGCFs showed a lower electrical resistivity compared to the untreated samples. The composites containing VGCFs subjected to the copper electrodeposition process showed the lowest resistivity with no change in the mechanical properties. Changes in rheological properties demonstrated the effects of varying surface conditions of the VGCFs. Microscopic analysis of these composites showed a heterogeneous distribution of VGCFs forming an interconnected network with the presence of copper on the surface of the VGCFs and in the matrix. Both the interconnected network and the presence of copper led to a lower percolation threshold than those seen in a previous work where high dispersion was sought. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2527–2534, 2003  相似文献   

8.
Short carbon fiber‐reinforced composites (SCFRCs) have attracted increasing attention owing to their comprehensive performance and easy processing route. However, the imperfect interfacial adhesion and serious stress concentration at the fiber/matrix interface have hampered their engineering application. In this article, we first report the preparation of SCFRC modified by a low‐viscosity liquid hyperbranched epoxy resin (Hyper E102). We then investigated the effect of Hyper E102 content on thermal and mechanical properties. The results show that the overall performance of the SCFRC first increases and then decreases with the increasing content of Hyper E102. With the incorporation of 12 phr Hyper E102, the tensile strength, fracture toughness, notched, and unnotched impact strength of SCFRC were increased by 16.7, 74.9, 95.3, and 194.5%, respectively. The toughening and reinforcing mechanisms were attributed to the following three aspects. First, the Hyper E102 improves the impregnation property of epoxy matrix against fibers, which helps form a better interfacial adhesion. Second, the incorporation of Hyper E102 reduces the internal stress level and stress concentration of the SCFRC. Finally, the critical crack length inside the SCFRC can be remarkably increased with the incorporation of Hyper E102, which can enhance the damage tolerance of a composite. POLYM. COMPOS., 37:2727–2733, 2016. © 2015 Society of Plastics Engineers  相似文献   

9.
10.
The melt rheological analysis of high‐density polyethylene reinforced with vapor‐grown carbon nanofibers (VGCNFs) was performed on an oscillatory rheometer. The influence of frequency, temperature, and nanofiber concentration (up to 30 wt %) on the rheological properties of composites was investigated. Specifically, the viscosity increase is accompanied by an increase in the elastic melt properties, represented by the storage modulus G′, which is much higher than the increase in the loss modulus G″. The composites and pure PE exhibit a typical shear thinning behavior as complex viscosity decreases rapidly with the increase of shearing frequency. The shear thinning behavior is much more pronounced for the composites with high fiber concentration. The rheological threshold value for this system was found to be around 10 wt % of VGCNF. The damping factor was reduced significantly by the inclusion of nanofibers into the matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 155–162, 2004  相似文献   

11.
Polyamide 6/ethylene–propylene–diene metallocene terpolymer/(ethylene–propylene–diene copolymer)‐graft‐(maleic anhydride) blends with clay (3 and 5 wt % depending on the formulation), different clays (montmorillonite and sepiolite) and different surface functionalization (ammonium salts and silanes) were studied to analyze the effect of the shape of clay and type of modifier on their properties. The results have shown that sepiolite has higher influence on the morphology and on the mechanical properties than montmorillonite. In that sense, blends with 3 wt % of sepiolite have reached the best balanced properties, i.e., tensile modulus and impact strength, than their homologous with montmorillonite. Furthermore, the blends with 3 wt % of sepiolite have reached the highest mechanical properties compared with blends with higher montmorillonite content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
A series of shape memory polyurethanes (SPU) with different component ratio of PEG, MDI, BDO, and crosslinker DEA were synthesized by stepwise polymerization in DMF. WAXD, SAXS, DMTA, and DTA were used to study the microphase structure of SPU. No obvious phase‐separation and crystalline evidence of the PEG soft segment and hard segment were obtained in this work. The water‐swollen ratio increases with both the increasing molecular weight of PEG soft segment and the decreasing density of the chemical crossbonding. All the samples show good thermally stimulated shape memory properties. When the molar ratio of soft segment to hard segment is close, the shape recovery time reduces along with the increasing density of the chemical crossbonding. When the densities of the chemical crossbonding are similar, the shape recovery time reduces with the increasing molecular weight of the PEG soft segment. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1504–1512, 2002; DOI 10.1002/app.10357  相似文献   

13.
Xintao Li  Hejun Li  Jian Wei  Chuang Wang 《Carbon》2007,45(8):1662-1668
Using ferrocene as catalyst and toluene as the liquid precursor, carbon/carbon (C/C) composites were prepared by chemical liquid-vapor infiltration at 850-1100 °C. The microstructures and properties of C/C composites obtained with different ferrocene contents were studied. The results show smooth laminar and isotropic pyrocarbon are obtained after adding ferrocene to the precursor. Carbon nanofibers can be formed as the catalyst content is 0.3-1 wt.%. When the ferrocene content is 2 wt.%, multi-walled carbon nanotubes with the diameter about 20-90 nm are obtained together with carbon-encapsulated iron nanoparticles. After adding ferrocene to the precursor, the fracture modes of the composites change from brittle facture to tough fracture. The flexural strength of the composites is a maximum for 0.3 wt.% ferrocene in the precursor, higher than for ferrocene contents of 0, 0.5, 1 and 2 wt.%. The flexural modulus of the composites decreases after adding ferrocene to the precursor.  相似文献   

14.
Nanocomposites have been obtained by dispersing various amounts of vapor grown carbon nanofibers within isotactic polypropylene. Thermal investigations done by differential scanning calorimetry and dynamic mechanical analysis revealed the effect of the vapor grown carbon nanofibers on the melting, crystallization, α, and β relaxations. Direct current electrical features of these nanocomposites have been investigated and related to the thermal features of these nanocomposites. The effect of the loading with carbon nanofibers on the electrical properties of these nanocomposites is discussed within the percolation theory. The percolation threshold was estimated at about 5.5% wt carbon nanofibers. The temperature dependence of the direct current conductivity is analyzed in detail and it is concluded that the electronic hopping is the dominant transport mechanism. A transition from one‐dimensional hopping towards a three‐dimensional hopping was noticed as the concentration of carbon nanofibers was increased from 10% wt to 20% wt carbon nanofiber. The possibility of a differential negative resistivity is suggested. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45297.  相似文献   

15.
《Polymer Composites》2017,38(7):1412-1417
Nowadays, hybrid composites are one of the important materials in industry due to their special properties. In this research, hybrid oxidized polyacrylonitrile (PAN) and carbon fibers reinforcement were used in epoxy matrix. The hybrid composites were fabricated using the hand lay‐up technique by placing the reinforcements in different layering sequences. Thermal and mechanical properties of these hybrid composites were investigated by thermal analysis, horizontal burning, tensile and bending tests. The tensile test results indicated that increasing oxidized polyacrylonitrile fibers (OPFs) to carbon fibers ratio decreased tensile strength and elastic modulus but increased failure strain. Hybrid oxidized PAN and carbon fibers reinforcement in composites led to decreasing flexural stress and modulus, and increasing flame retardancy. Thermal analysis results also showed that the maximum rate of mass loss in all composites was 370.6°C. It was also found that the maximum and minimum amounts of char residue at 900°C were related to the composites with four layers of carbon and OPFs, respectively. POLYM. COMPOS., 38:1412–1417, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
In this work, vapor-grown carbon nanofibers (CNFs) were functionalized using an optimized route and dispersed in the matrix of carbon fabric-reinforced epoxy composites to develop multiscale carbon/epoxy composites. Functionalization was carried out through an oxidative treatment with a mixture of HNO3/H2SO4 (1 : 3) using a combination of ultrasonication and magnetic stirring. Functionalized CNFs (F-CNFs) were characterized for their morphology, length, functional groups, and degradation due to oxidative treatment. The results showed that it was possible to efficiently functionalize CNFs without any degradation through proper selection of treatment duration. F-CNFs were dispersed homogeneously into the epoxy matrix using ultrasonication in combination with high-speed mechanical stirring. The incorporation of 0.1 wt % F-CNFs led to a 65% increase in Young's modulus and a 36% in tensile strength of neat carbon/epoxy composites. The fracture surfaces were studied using scanning electron microscopy to understand the property enhancement due to F-CNFs. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
In the present research, the reinforcement effect of vapor grown carbon nanofiber (VGCNF) was studied in relation to the mechanical properties and electrical conduction behavior of fabricated nanocomposites. Different weight fractions of nanofillers into epoxy resin, from 0.05 to 1 wt% and up to 2 wt% for mechanical and electrical properties were investigated. It was found that the optimum improvement in mechanical properties of nanocomposite is obtained at 0.25 wt% of carbon nanofibers. At this filler content, 23 % enhancement in tensile strength and 10 % in flexural strength have been observed. The degree of the VGCNF dispersion has been monitored by means of viscosity variation of the suspension during the sonication process to obtain the optimum sonication time. Finally, the quality of the dispersion for post-cured nanocomposites is characterized by fractured surfaces using the scanning electron microscopy. Agglomerates had a direct effect on the reduction of tensile and flexural strength of nanocomposites. The electrical conductivity was obtained by means of surface measuring method. The optimum amount of filler for the generation of a fine electrical conductivity was found to be around 0.5 wt% of VGCNF. After the threshold point, the electrical conductivity of nanocomposites was slightly raised in spite of adding more filler contents.  相似文献   

18.
Silicon carbide nanofibers (SiCNFs) used as the second reinforcements of carbon/carbon composites were grown radially on the carbon fiber surface. The microstructure of SiCNFs and their effects on the microstructure and flexural properties of C/C composites were investigated. Results show that there are many defects such as twin crystals and stacking faults in SiCNFs which were grown by catalytic chemical vapor deposition. During the same process, the skin region of carbon fiber has changed. Several SiC layers are formed and the arrangement of the graphite layers around SiC layers is more orderly. In the next chemical vapor infiltration, due to the induction of SiCNFs, the middle textural pyrocarbon were formed firstly and then is the high textural pyrocarbon. The existence of SiCNFs also contributes to the three-phase interface between pyrocarbon, SiCNFs and carbon fibers, resulting in a good bond between carbon fiber and matrix. Those structural changes lead the better flexural properties of SiCNF–C/C composites compared with C/C composites.  相似文献   

19.
A mechanically flexible mat consisting of structurally amorphous SiO2 (glass) nanofibers was first prepared by electrospinning followed by pyrolysis under optimized conditions and procedures. Thereafter, two types of hybrid multi‐scale epoxy composites were fabricated via the technique of vacuum assisted resin transfer molding. For the first type of composites, six layers of conventional glass microfiber (GF) fabrics were infused with the epoxy resin containing shortened electrospun glass nanofibers (S‐EGNFs). For the second type of composites, five layers of electrospun glass nanofiber mats (EGNF‐mats) were sandwiched between six layers of conventional GF fabrics followed by the infusion of neat epoxy resin. For comparison, the (conventional) epoxy composites with six layers of GF fabrics alone were also fabricated as the control sample. Incorporation of EGNFs (i.e., S‐EGNFs and EGNF‐mats) into GF/epoxy composites led to significant improvements in mechanical properties, while the EGNF‐mats outperformed S‐EGNFs in the reinforcement of resin‐rich interlaminar regions. The composites reinforced with EGNF‐mats exhibited the highest mechanical properties overall; specifically, the impact absorption energy, interlaminar shear strength, flexural strength, flexural modulus, and work of fracture were (1097.3 ± 48.5) J/m, (42.2 ± 1.4) MPa, (387.1 ± 9.9) MPa, (12.9 ± 1.3) GPa, and (30.6 ± 1.8) kJ/m2, corresponding to increases of 34.6%, 104.8%, 65.4%, 33.0%, and 56.1% compared to the control sample. This study suggests that EGNFs (particularly flexible EGNF‐mats) would be an innovative type of nanoscale reinforcement for the development of high‐performance structural composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42731.  相似文献   

20.
High thermal conductivity fillers of boron nitride (BN) and vapor‐grown carbon fiber (VGCF) were used alone or incorporate to prepare polypropylene (PP) composites. The effects of filler content, particle size and shape, and single vs. hybrid BN/VGCF fillers were investigated with respect to the thermal conductivity of the PP composites. The thermal conductivity of PP/BN composites depended upon the content and particle size of the BN. Increased content and length of VGCF had the effect of increasing the thermal conductivity of the PP composites. Hybrid fillers were created with a mixture of medium‐sized BN and long‐length VGCF; hybrid BN/VGCF fillers enhanced the thermal conductivity of PP composites with a lower total content compared with PP composites containing only medium‐sized BN particles. POLYM. COMPOS., 37:936–942, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号