共查询到20条相似文献,搜索用时 15 毫秒
1.
Industrially feasible,dopant‐free,carrier‐selective contacts for high‐efficiency silicon solar cells
《Progress in Photovoltaics: Research and Applications》2017,25(11):896-904
Dopant‐free, carrier‐selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron‐selective titanium dioxide (TiO2) contacts, one of the most promising dopant‐free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO2 contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO2 contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n‐type silicon solar cell featuring a full‐area TiO2 contact. Next, we demonstrate the compatibility of TiO2 contacts with an industrial contact‐firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long‐term stability. Our findings underscore the great appeal of TiO2 contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
2.
Ashwin S. Raghavan Todd A. Palmer Katherine C. Kragh‐Buetow Anna C. Domask Edward W. Reutzel Suzanne E. Mohney Tarasankar DebRoy 《Progress in Photovoltaics: Research and Applications》2015,23(8):1025-1036
Laser‐fired contacts (LFCs) are typically fabricated with nanosecond pulse durations despite the fact that extremely precise and costly control of the process is necessary to prevent significant ablation of the aluminum metallization layer. Microsecond pulse durations offer the advantage of reduced metal expulsion and can be implemented with diffractive optics to process multiple contacts simultaneously and meet production demands. In this work, the influence of changes in laser processing parameters on contact morphology, resistance, and composition when using microsecond pulses has been fully evaluated. Simulated and experimental results indicate that contacts are hemispherical or half‐ellipsoidal in shape. In addition, the resolidified contact region is composed of a two‐phase aluminum–silicon microstructure that grows from the single‐crystal silicon wafer during resolidification. As a result, the total contact resistance is governed by the interfacial contact area for a three‐dimensional contact geometry rather than the planar contact area at the aluminum–silicon interface in the passivation layer opening. The results also suggest that for two LFCs with the same size top surface diameter, the contact produced with a smaller beam size will have a 25–37% lower contact resistance, depending on the LFC diameter, because of a larger contact area at the LFC/wafer interface. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
3.
Jianbo He Steven Hegedus Ujjwal Das Zhan Shu Murray Bennett Lei Zhang Robert Birkmire 《Progress in Photovoltaics: Research and Applications》2015,23(9):1091-1099
Laser‐fired contacts to n‐type crystalline silicon were developed by investigating novel metal stacks containing Antimony (Sb). Lasing conditions and the structure of metals stacks were optimized for lowest contact resistance and minimum surface damage. Specific contact resistance for firing different metal stacks through either silicon nitride or p‐type amorphous silicon was determined using two different models and test structures. Specific contact resistance values of 2–7 mΩcm2 have been achieved. Recombination loss due to laser damage was consistent with an extracted local surface recombination velocity of ~20 000 cm/s, which is similar to values for laser‐fired base contact for p‐type crystalline silicon. Interdigitated back contact silicon heterojunction cells were fabricated with laser‐fired base contact and proof‐of‐concept efficiencies of 16.9% were achieved. This localized base contact technique will enable low cost back contact patterning and innovative designs for n‐type crystalline solar cell. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
M. Hrteis J. Bartsch S. Binder A. Filipovic J. Merkel V. Radtke S. W. Glunz 《Progress in Photovoltaics: Research and Applications》2010,18(4):240-248
The properties of fine‐line printed contacts on silicon solar cells, in combination with light‐induced plating (LIP), are presented. The seed layers are printed using an aerosol system and a new metallization ink called SISC developed at Fraunhofer ISE. The influence of multiple layer printing on the contact geometry is studied as well as the influence of the contact height on the line resistivity and on the contact resistance. The dependence between contact resistance and contact height is measured using the transfer length model (TLM). Further on, it is explained by taking SEM images of the metal–semiconductor interface, that a contact height of less than 1 µm or a minimum ink amount of only 4–6 mg is sufficient to contact a large area (15·6 cm × 15·6 cm) silicon solar cell on the front side and results in a contact resistance Rc × W < 0·5 Ω cm. As the line resistivity of fine‐line printed fingers needs to be reduced by LIP, three different plating solutions are tested on solar cells. The observed differences in line resistivity between ρf = 5 × 10−8 and 2 × 10−8 Ω m are explained by taking SEM pictures of the grown LIP‐silver. Finally, the optimum LIP height for different line resistivities is calculated and experimentally confirmed by processing solar cells with an increasing amount of LIP silver. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
Jiun‐Hua Guo Peter J. Cousins Jeffrey E. Cotter 《Progress in Photovoltaics: Research and Applications》2006,14(2):95-105
It has been shown that n‐type laser‐grooved buried contact solar cells exhibit a high‐efficiency potential, both on interdigitated backside buried contact (IBBC) and double‐sided buried contact (DSBC) cell structures. As the IBBC solar cell contains heavily doped, compensated regions, the shunt mechanisms are more complicated, and are different from those of the conventional front‐collecting‐junction solar cells. In this paper, several shunting mechanisms hindering the performances of the n‐type buried contact solar cells are investigated and discussed. The main shunting routes in n‐type IBBC solar cells are concluded as follows: (1) the emitter contact metal touching the n‐type substrate, which is either due to nonuniform boron deposition or diffusion‐induced misfit dislocations; (2) the base contact metal touching the p+ emitter, attributed to either the phosphorus groove diffusion being unable to compensate for the boron emitter diffusion, or the junction depth located in the diffusion overlap regions not deep enough to prevent nickel from spiking through the groove diffusion. The shunt resistance of the IBBC cells increased by more than two orders of magnitude after eliminating the shunt mechanisms discussed in this study. This led to an improvement in fill factor from 0·71–0·73 to 0·74–0·76, and an increase of average absolute efficiency of more than 0·65%. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
6.
Henning Schulte‐Huxel Susanne Blankemeyer Agnes Merkle Verena Steckenreiter Sarah Kajari‐Schröder Rolf Brendel 《Progress in Photovoltaics: Research and Applications》2015,23(8):1057-1065
We are presenting the module integration of busbar‐free back‐junction back‐contact (BJBC) solar cells. Our proof‐of‐concept module has a fill factor of 80.5% and a conversion efficiency on the designated area of 22.1% prior to lamination. A pulsed laser welds the Al metallization of the solar cells to an Al foil carried by a transparent substrate. The weld spots electrically contact each individual finger to the Al foil, which serves as interconnect between different cells. We produce a proof‐of‐concept module using busbar‐free cell strips of 25 × 125 mm2. These are obtained by laser‐dicing of a 125 × 125 mm2 BJBC solar cell. The fill factor of this module is increased by 3.5% absolute compared with the initial cell before laser‐dicing. This is achieved mainly by omitting the busbars and reduction of the finger length. The improvement of the module fill factor results in an increase in the module performance of 0.9% absolute before lamination in comparison with the efficiency of the initial 125 × 125 mm2 BJBC solar cell. Hence, this interconnection scheme enables the transfer of high cell efficiencies to the module. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
S. Kontermann A. Wolf D. Reinwand A. Grohe D. Biro R. Preu 《Progress in Photovoltaics: Research and Applications》2009,17(8):554-566
Silicon solar cells that feature screen printed front contacts and a passivated rear surface with local contacts allow higher efficiencies compared to present industrial solar cells that exhibit a full area rear side metallization. If thermal oxidation is used for the rear surface passivation, the final annealing step in the processing sequence is crucial. On the one hand, this post‐metallization annealing (PMA) step is required for decreasing the surface recombination velocity (SRV) at the aluminum‐coated oxide‐passivated rear surface. On the other hand, PMA can negatively affect the screen printed front side metallization leading to a lower fill factor. This work separately analyzes the impact of PMA on both, the screen printed front metallization and the oxide‐passivated rear surface. Measuring dark and illuminated IV‐curves of standard industrial aluminum back surface field (Al‐BSF) silicon solar cells reveals the impact of PMA on the front metallization, while measuring the effective minority carrier lifetime of symmetric lifetime samples provides information about the rear side SRV. One‐dimensional simulations are used for predicting the cell performance according to the contributions from both, the front metallization and the rear oxide‐passivation for different PMA temperatures and durations. The simulation also includes recombination at the local rear contacts. An optimized PMA process is presented according to the simulations and is experimentally verified. The optimized process is applied to silicon solar cells with a screen printed front side metallization and an oxide‐passivated rear surface. Efficiencies up to 18.1% are achieved on 148.8 cm2 Czochralski (Cz) silicon wafers. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
8.
O. Schultz S. W. Glunz S. Riepe G. P. Willeke 《Progress in Photovoltaics: Research and Applications》2006,14(8):711-719
Measurements of the dislocation density are compared with locally resolved measurements of carrier lifetime for p‐type multicrystalline silicon. A correlation between dislocation density and carrier recombination was found: high carrier lifetimes (>100 µs) were only measured in areas with low dislocation density (<105 cm−2), in areas of high dislocation density (>106 cm−2) relatively low lifetimes (<20 µs) were observed. In order to remove mobile impurities from the silicon, a phosphorus diffusion gettering process was applied. An increase of the carrier lifetime by about a factor of three was observed in lowly dislocated regions whereas in highly dislocated areas no gettering efficiency was observed. To test the effectiveness of the gettering in a solar cell manufacturing process, five different multicrystalline silicon materials from four manufacturers were phosphorus gettered. Base resistivity varied between 0·5 and 5 Ω cm for the boron‐ and gallium‐doped p‐type wafers which were used in this study. The high‐efficiency solar cell structure, which has led to the highest conversion efficiencies of multicrystalline silicon solar cells to date, was used to fabricate numerous solar cells with aperture areas of 1 and 4 cm2. Efficiencies in the 20% range were achieved for all materials with an average value of 18%. Best efficiencies for 1 cm2 (20·3%) and 4 cm2 (19·8%) cells were achieved on 0·6 and 1·5 Ω cm, respectively. This proves that multicrystalline silicon of very different material specification can yield very high efficiencies if an appropriate cell process is applied. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
9.
P. Ortega A. Orpella I. Martín M. Colina G. Lpez C. Voz M. I. Snchez C. Molpeceres R. Alcubilla 《Progress in Photovoltaics: Research and Applications》2012,20(2):173-180
In this work we study the optimization of laser‐fired contact (LFC) processing parameters, namely laser power and number of pulses, based on the electrical resistance measurement of an aluminum single LFC point. LFC process has been made through four passivation layers that are typically used in c‐Si and mc‐Si solar cell fabrication: thermally grown silicon oxide (SiO2), deposited phosphorus‐doped amorphous silicon carbide (a‐SiCx/H(n)), aluminum oxide (Al2O3) and silicon nitride (SiNx/H) films. Values for the LFC resistance normalized by the laser spot area in the range of 0.65–3 mΩ cm2 have been obtained. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
10.
Filip Duerinckx Kris Van Nieuwenhuysen Hyonju Kim Izabela Kuzma‐Filipek Harold Dekkers Guy Beaucarne Jef Poortmans 《Progress in Photovoltaics: Research and Applications》2005,13(8):673-690
Thin‐film epitaxial silicon solar cells are an attractive future alternative for bulk silicon solar cells incorporating many of the process advantages of the latter, but on a potentially cheap substrate. Several challenges have to be tackled before this potential can be successfully exploited on a large scale. This paper describes the points of interest and how IMEC aims to solve them. It presents a new step forward towards our final objective: the development of an industrial cell process based on screen‐printing for > 15% efficient epitaxial silicon solar cells on a low‐cost substrate. Included in the discussion are the substrates onto which the epitaxial deposition is done and how work is progressing in several research institutes and universities on the topic of a high‐throughput epitaxial reactor. The industrial screen‐printing process sequence developed at IMEC for these epitaxial silicon solar cells is presented, with emphasis on plasma texturing and improvement of the quality of the epitaxial layer. Efficiencies between 12 and 13% are presented for large‐area (98 cm2) epitaxial layers on highly doped UMG‐Si, off‐spec and reclaim material. Finally, the need for an internal reflection scheme is explained. A realistically achievable internal reflection at the epi/substrate interface of 70% will result in a calculated increase of 3 mA/cm2 in short‐circuit current. An interfacial stack of porous silicon layers (Bragg reflectors) is chosen as a promising candidate and the challenges facing its incorporation between the epitaxial layer and the substrate are presented. Experimental work on this topic is reported and concentrates on the extraction of the internal reflection at the epi/substrate interface from reflectance measurements. Initial results show an internal reflectance between 30 and 60% with a four‐layer porous silicon stack. Resistance measurements for majority carrier flow through these porous silicon stacks are also included and show that no resistance increase is measurable for stacks up to four layers. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
11.
Paul Sonntag Jan Haschke Sven Kühnapfel Tim Frijnts Daniel Amkreutz Bernd Rech 《Progress in Photovoltaics: Research and Applications》2016,24(5):716-724
We present an interdigitated back‐contact silicon heterojunction system designed for liquid‐phase crystallized thin‐film (~10 µm) silicon on glass. The preparation of the interdigitated emitter (a‐Si:H(p)) and absorber (a‐Si:H(n)) contact layers relies on the etch selectivity of doped amorphous silicon layers in alkaline solutions. The etch rates of a‐Si:H(n) and a‐Si:H(p) in 0.6% NaOH were determined and interdigitated back‐contact silicon heterojunction solar cells with two different metallizations, namely Al and ITO/Ag electrodes, were evaluated regarding electrical and optical properties. An additional random pyramid texture on the back side provides short‐circuit current density (jSC) of up to 30.3 mA/cm2 using the ITO/Ag metallization. The maximum efficiency of 10.5% is mainly limited by a low of fill factor of 57%. However, the high jSC, as well as VOC values of 633 mV and pseudo‐fill factors of 77%, underline the high potential of this approach. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
Abderrahmane Belghachi Abderrachid Helmaoui Ali Cheknane 《Progress in Photovoltaics: Research and Applications》2010,18(2):79-82
The reduction of surface recombination in GaAs solar cells is known to be a major concern for photovoltaic cells designers. A common technique used to reduce this effect is to cover the GaAs surface with a wide band gap window layer, therefore the creation of a heterojunction. To avoid a heterojunction with its inconveniences; interface surface states, poor photon absorption in addition to the technological exigencies, one can use an all‐GaAs solar cell. In this type of structure, a thin highly doped layer is created at the surface known as a front surface field (FSF). The main role of an FSF layer is to reduce the effect of front surface recombination and the enhancement of light‐generated free carriers' collection. This is achieved by the drastic reduction of the effective recombination at the emitter upper boundary. In this work, a simple analytical model is used to simulate the influence of the FSF layer on GaAs solar cell parameters; photocurrent, open circuit voltage and energy conversion efficiency. The effects of the FSF layer doping density and its thickness on the cell performance are discussed by using computed results. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
A. Wolf B. Terheiden R. Brendel 《Progress in Photovoltaics: Research and Applications》2007,15(3):199-210
The in situ formation of an emitter in monocrystalline silicon thin‐film solar cells by solid‐state diffusion of dopants from the growth substrate during epitaxy is demonstrated. This approach, that we denote autodiffusion, combines the epitaxy and the diffusion into one single process. Layer‐transfer with porous silicon (PSI process) is used to fabricate n‐type silicon thin‐film solar cells. The cells feature a boron emitter on the cell rear side that is formed by autodiffusion. The sheet resistance of this autodiffused emitter is 330 Ω/□. An independently confirmed conversion efficiency of (14·5 ± 0·4)% with a high short circuit current density of (33·3 ± 0·8) mA/cm2 is achieved for a 2 × 2 cm2 large cell with a thickness of (24 ± 1) µm. Transferred n‐type silicon thin films made from the same run as the cells show effective carrier lifetimes exceeding 13 µs. From these samples a bulk diffusion length L > 111 µm is deduced. Amorphous silicon is used to passivate the rear surface of these samples after the layer‐transfer resulting in a surface recombination velocity lower than 38 cm/s. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
14.
Pablo Ortega Eric Calle Guillaume von Gastrow Pivikki Repo David Carri Hele Savin Ramn Alcubilla 《Progress in Photovoltaics: Research and Applications》2015,23(11):1448-1457
This work demonstrates the high potential of Al2O3 passivated black silicon in high‐efficiency interdigitated back contacted (IBC) solar cells by reducing surface reflectance without jeopardizing surface passivation. Very low reflectance values, below 0.7% in the 300–1000 nm wavelength range, together with striking surface recombination velocities values of 17 and 5 cm/s on p‐type and n‐type crystalline silicon substrates, respectively, are reached. The simultaneous fulfillment of requirements, low reflectance and low surface recombination, paves the way for the fabrication of high‐efficiency IBC Si solar cells using black silicon at their front surface. Outstanding photovoltaic efficiencies over 22% have been achieved both in p‐type and n‐type 9‐cm2 cells. 3D simulations suggest that efficiencies of up to 24% can be obtained in the future with minor modifications in the baseline fabrication process. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
15.
Guoping Du Yu Zhang Wang Li Nan Chen Bingfa Liu Jie Sun 《Progress in Photovoltaics: Research and Applications》2015,23(12):1806-1814
Silicon nitride coating deposited by the plasma‐enhanced chemical vapor deposition method is the most widely used antireflection coating for crystalline silicon solar cells. In this work, we employed double‐layered silicon nitride coating consisting of a top layer with a lower refractive index and a bottom layer (contacting the silicon wafer) with a higher refractive index for multicrystalline silicon solar cells. An optimization procedure was presented for maximizing the photovoltaic performance of the encapsulated solar cells or modules. The dependence of their photovoltaic properties on the thickness of silicon nitride coatings was carefully analyzed. Desirable thicknesses of the individual silicon nitride layers for the double‐layered coatings were calculated. In order to get statistical conclusions, we fabricated a large number of multicrystalline silicon solar cells using the standard production line for both the double‐layered and single‐layered antireflection coating types. On the cell level, the double‐layered silicon nitride antireflection coating resulted in an increase of 0.21%, absolute for the average conversion efficiency, and 1.8 mV and 0.11 mA/cm2 for the average open‐circuit voltage and short‐circuit current density, respectively. On the module level, the cell to module power transfer factor was analyzed, and it was demonstrated that the double‐layered silicon nitride antireflection coating provided a consistent enhancement in the photovoltaic performance for multicrystalline silicon solar cell modules than the single‐layered silicon nitride coating. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
This paper presents the application of the analytical model for locally contacted rear sides recently published by Fischer to the determination of recombination losses of solar cells with fixed metallization fraction, but varying contact pitch. After the successful experimental validation of the model on oxide‐passivated solar cells with ohmic contacts, the model was used for a detailed investigation of rear sides prepared by the laser‐fired contacts (LFC) method. In this way the surface recombination velocity (SRV) at the very contact areas was extracted for a broad base doping range. The determined parameterization allows the calculation of the SRV of any LFC rear side concerning base doping and contact pitch. The excellent passivation quality of the alnealed oxide with LFC contacts is shown: on 1 (100) Ω cm FZ an effective SRV of only 35 (4·3) cm/s could be measured with 1000 µm contact pitch. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
17.
Barada K. Nayak Vikram V. Iyengar Mool C. Gupta 《Progress in Photovoltaics: Research and Applications》2011,19(6):631-639
A novel ultrafast laser processing technique is used to create self‐assembled micro/nano structures on a silicon surface for efficient light trapping. Under appropriate experimental conditions, light reflection (including scattering) of the Si surface has been reduced to less than 3% for the entire solar spectrum and the material appears completely black to the naked eye. A post‐chemical cleaning is applied to remove laser‐redeposited material and induced defects. Optical, morphological, and structural characterizations have been carried out on as‐laser‐treated and post‐chemically cleaned surfaces. Finally, we report for the first time the total efficiency of over 14% and high external quantum efficiency (EQE) results on photovoltaic devices fabricated on the ultrafast‐laser‐induced micro/nano structured silicon wafer, which can be further improved upon process optimization. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
H. Stiebig N. Senoussaoui C. Zahren C. Haase J. Müller 《Progress in Photovoltaics: Research and Applications》2006,14(1):13-24
As an alternative to randomly textured transparent conductive oxides as front contact for thin‐film silicon solar cells the application of transparent grating couplers was studied. The grating couplers were prepared by sputtering of aluminium‐doped zinc oxide (ZnO) on glass substrate, a photolithography and a lift‐off process and were used as periodically textured substrates. The period size and groove depth of these transparent gratings were tuned independently from each other and varied between 1 and 4 μm and 100–600 nm. The optical properties of rectangular‐shaped gratings and the opto‐electronic behaviour of amorphous and microcrystalline silicon solar cells with integrated grating couplers as a function of the grating parameters (period size P and groove depth hg) are presented. The optical properties of the gratings are discussed with respect to randomly textured substrates and the achieved solar cell results are compared with the opto‐electronic properties of solar cells deposited on untextured (flat) and randomly textured substrates. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
19.
H. Plagwitz M. Nerding N. Ott H. P. Strunk R. Brendel 《Progress in Photovoltaics: Research and Applications》2004,12(1):47-54
We have passivated boron‐doped, low‐resistivity crystalline silicon wafers on both sides by a layer of intrinsic, amorphous silicon (a‐Si:H). Local aluminum contacts were subsequently evaporated through a shadow mask. Annealing at 210°C in air dissolved the a‐Si:H underneath the Al layer and reduces the contact resistivity from above 1 Ω cm2 to 14·9 m Ω cm2. The average surface recombination velocity is 124 cm/s for the annealed samples with 6% metallization fraction. In contrast to the metallized regions, no structural change is observed in the non‐metallized regions of the annealed a‐Si:H film, which has a recombination velocity of 48 cm/s before and after annealing. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
20.
Noboru Yamada Oanh Ngo Kim Toru Tokimitsu Yusuke Nakai Hideki Masuda 《Progress in Photovoltaics: Research and Applications》2011,19(2):134-140
An anti‐reflection (AR) moth‐eye structure made of acrylic resin and deposited on a polyethylene terephthalate (PET) substrate was optimized in the wavelength range from 400 to 1170 nm; crystalline silicon (c‐Si) solar cells function efficiently in this wavelength range. The rigorous coupled wave analysis (RCWA) method was used for optical simulation, and the Taguchi method was used for efficient optimization. The simulation results showed that the reflectance of the optimized structure over the above‐mentioned wavelength range was less than 0.87% and that a minimal reflectance of 0.1% was observed at 400 nm. Experimental results showed that the reflectance of a fabricated moth‐eye structure was less than 1.0% in the wavelength range and that a minimal reflectance of 0.55% was observed at 700 nm. A c‐Si solar cell, which was enclosed in a polyvinyl butyral (PVB) layer of uniform thickness, was coated with the fabricated moth‐eye film, and it was observed that the moth‐eye film increased electric generation (EG) up to 15%, depending on the incident angle. Further, a daily increase in EG of up to 8.7% was estimated on a clear summer day in Japan when the moth‐eye film was used. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献