首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pickering emulsion polymerization has attracted considerable attention in material fabrication due to its unique surfactant-free character and versatile association of oil, water and particles for a large set of materials. In this study, SiO2 modified with Methacryloxypropyltrimethoxysilane (MPTMS) was employed to prepare Pickering emulsion, and subsequently covalently-bonded polystyrene/SiO2(PS/SiO2) composites were synthesized by Oil-in-water Pickering emulsion polymerization. Optical micrograph, contact angle, thermogravimetric analysis (TGA), Fourier transform infrared spectra (FT-IR), scanning electron microscope (SEM) and dynamic laser scattering (DLS) were employed to characterize the modified SiO2, Pickering emulsion and prepared composites. It was found that prepared composites possess ragged surface morphology and SiO2 concentration has an important effect on the morphology of as-prepared composites. In addition, covalent bond between PS core and SiO2 shell was evidenced by FT-IR.  相似文献   

2.
A facile and novel strategy was reported on the fabrication of raspberry‐like SiO2/polystyrene (SiO2/PS) composite particles by emulsion polymerization in the presence of vinyl‐functionalized silica (vinyl‐SiO2) particles, which were prepared via a one‐step sol–gel process using vinyltriethoxysilane as the precursor. The submicron vinyl‐SiO2 particles were used as the core, and nanosized PS particles were then adsorbed onto the vinyl‐SiO2 particles to form raspberry‐like composite particles during the polymerization process. The composition, morphology, and structure of the vinyl‐SiO2 particles and the SiO2/PS hybrid particles were characterized by thermogravimetric analysis, nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. Superhydrophobic surface can be constructed by directly depositing the raspberry‐like SiO2/PS composite particles on glass substrate, and the water contact angle can be adjusted by the styrene/SiO2 weight ratio. In addition, the superhydrophobic film possessed a strong adhesive force to pin water droplet on the surface even when the film was turned upside down. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

3.
This report describes the novel preparation of silica/polystyrene (SiO2/PS) core–shell composite nanospheres by in situ radical dispersion polymerization in an ionic liquid (IL). Silica nanoparticles were first surface modified by the silane coupling agent methacryloxypropyltrimethoxysilane (MPTMS), which is capable of copolymerizing with styrene and provided a reactive CC bond. Transmission electron microscopy (TEM) revealed core–shell morphology with smooth surfaces. X-ray photoelectron spectroscopy (XPS) analysis demonstrated that almost all of the SiO2 nanoparticles were encapsulated by the polymer. The composite particles were also analyzed by FT-IR spectroscopy and thermogravimetric analysis (TGA). In principle, this simple and environmentally-friendly synthetic procedure can be employed to prepare other inorganic oxide-containing polymer composites.  相似文献   

4.
The compatibility of poly(p-dioxanone) (PPDO) and poly(lactic acid) (PLA) is very important when they are blended. Herein, three kinds of snowman-like Janus particles (JPs) with different hydrophilic–lipophilic balance (HLB) were prepared by one-pot method by adjusting the surficial functional groups of polystyrene (PS) side and used as the compatibilizer of PPDO/PLA composites. JPs self-assemble at the cell-structure PPDO/PLA interface, which provides channels for the migration of PPDO. The silica (SiO2) side forms hydrogen bond with PLA, and the PS side forms hydrophobic action with PPDO. Therefore, JPs improve interfacial adhesion and suppress phase separation. Among the three JPs, silica@polystyrene-graft-polymethylmethacrylate (SiO2@PS-PMMA) possesses the most excellent interfacial behavior because its HLB value is similar to that of PPDO/PLA composites. Tensile strength was increased from the original 14.59 MPa to the maximum 24.18 MPa at 1.5 phr of SiO2@PS-PMMA JPs, and the elongation at break increased from 39% to 203%.  相似文献   

5.
New methacryloyloxyalkylaminoalkylalkoxysilanes have been synthesised by Michael addition of the corresponding acryloyloxyalkyl methacrylates with (3‐aminopropyl)triethoxysilane (APTES). Low‐viscosity polycondensates have been formed by hydrolysis and condensation of these silanes in the presence of ammonium fluoride (NH4F). The reaction of APTES with the addition product of succinic or glutaric anhydride with glycerol dimethacrylate results in the formation of new dimethacrylate‐functionalised 3‐amidopropyltriethoxysilanes. The hydrolytic condensation of these silanes was carried out in the presence of 0.5 M HCl. The hydrolysis and condensation of the silanes have been studied by 29Si NMR spectroscopy. Cross‐linked inorganic‐organic materials have been obtained by free‐radical photopolymerisation of the polycondensates and their mixtures in the presence of camphorquinone and ethyl 4‐(dimethylamino)benzoate with visible light (VL). The synthesised polycondensates enable the preparation of diluent‐free composites. The mechanical properties of VL‐cured polycondensates and composites have been investigated.  相似文献   

6.
Both silica/polystyrene (SiO2/PS) and silica/polystyrene‐b‐polymethacryloxypropyltrimethoxysilane (SiO2/PS‐b‐PMPTS) hybrid nanoparticles were synthesized via surface‐initiated atom transfer radical polymerization (SI‐ATRP) from SiO2 nanoparticles. The growths of all polymers via ATRP from the SiO2 surfaces were well controlled as demonstrated by the macromolecular characteristics of the grafted chains. Their wettabilities were measured and compared by water contact angle (WCA) and surface roughness. The results show that the nanoparticles possess hydrophobic surface properties. The static WCA of SiO2/PS‐b‐PMPTS hybrid nanoparticles is smaller than that of SiO2/PS hybrid nanoparticles, meanwhile, the surface roughness of SiO2/PS‐b‐PMPTS hybrid nanoparticles is yet slightly rougher than that of SiO2/PS hybrid nanoparticles, which shows that the combination and competition of surface chemistry and roughness of a solid material can finally determine its wettability. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

7.
Core–shell poly(acrylic acid)/polystyrene/SiO2 (PAA/PS/SiO2) hybrid microspheres were prepared by dispersion polymerization with three stages in ethanol and ethyl acetate mixture medium. Using vinyltriethoxysilane (VTEOS) as silane agent, functional silica particles structured vinyl groups on surfaces were prepared by hydrolysis and polycondensation of tetraethoxysilane and VTEOS in core stage. Then, the silica particles were used as seeds to copolymerize with styrene and acrylic acid sequentially in shell stage I and stage II to form PAA/PS/SiO2 hybrid microspheres. Transmission electron microscope results show that most PAA/PS/SiO2 hybrid microspheres are about 40 nm in diameter, and the silica cores are about 15 nm in diameter, which covered with a layer of PS about 7.5‐nm thick and a layer of PAA about 5‐nm thick. This core–shell structure is also conformed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and differential scanning calorimetry. FTIR results show that silica core, PS shell, and PAA outermost shell are bonded by covalents. In the core–shell PAA/PS/SiO2 hybrid microsphere, the silica core is rigidity, and the PAA outermost shell is polarity, while the PS layer may work as lubricant owning to its superior processing rheological property in polymer blending. These core–shell PAA/PS/SiO2 hybrid microspheres have potential as new materials for polar polymer modification. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1729–1733, 2006  相似文献   

8.
Silica (SiO2)‐crosslinked polystyrene (PS) particles possessing photofunctional N,N‐diethyldithiocarbamate (DC) groups on their surface were prepared by the free‐radical emulsion copolymerization of a mixture of SiO2 (diameter Dn = 192 nm), styrene, divinyl benzene, 4‐vinylbenzyl N,N‐diethyldithiocarbamate (VBDC), and 2‐hydroxyethyl methacrylate with a radical initiator under UV irradiation. In this copolymerization, the inimer VBDC had the formation of a hyperbranched structure by a living radical mechanism. These particles had DC groups on their surface. Subsequently, poly(methyl methacrylate) brushes encapsulated SiO2 particles were synthesized by the grafting from a photoinduced atom transfer radical polymerization (ATRP) approach of methyl methacrylate initiated by SiO2‐crosslinked PS particles as a macroinitiator. We constructed the colloidal crystals using these photofunctional particles. Moreover, the SiO2 particle array of colloidal crystals was locked by radical photopolymerization with vinyl monomer as a matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The preparation of polystyrene (PS)/montmorillonite (MMT) composites in supercritical carbon dioxide (SC? CO2) was studied. Lipophilic organically modified MMT can be produced through an ion‐exchange reaction between native hydrophilic MMT and an intercalating agent (alkyl ammonium). PS/clay composites were prepared by free‐radical precipitation polymerization of styrene containing dispersed clay. X‐ray diffraction and transmission electron microscopy indicated that intercalation of MMT was achieved. PS/clay composites have a higher thermal decomposition temperature and lower glass‐transition temperature than pure PS. The IR spectrum analysis showed that the solvent of SC? CO2 did not change the structures of the PS molecules, but there were some chemical interactions between the PS and the clay in the composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 22–28, 2005  相似文献   

10.
The PT/PS/SiO2 nanocomposite of polythiophene (PT), polystyrene (PS), and SiO2 with a grain size of 100–150 nm was synthesized by chemical polymerization using FeCl3 oxidant in nanoqueous medium (CHCl3). The properties of PT/PS/SiO2 synthesized were compared to those of PT, PT/PS, and PT/SiO2 synthesized in the same conditions. The synthesized materials were subsequently characterized by FTIR spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The incorporation of PT in the composite was endorsed by FTIR studies. TGA revealed enhanced thermal stability of the PT/PS/SiO2 nanocomposite compared to that of PT. SEMs showed globular particles and the presence of clusters of composite particles. The conductivity of the PT/PS/SiO2 nanocomposite was measured as 1.30×10?7 Scm?1 and the conductivity value of PT (1.02×10?4 Scm?1) decreased with entiring PS and SiO2 to PT structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 746–752, 2005  相似文献   

11.
Silica (SiO2)‐crosslinked polystyrene (PS) particles possessing photofunctional N,N‐diethyldithiocarbamate (DC) groups on their surface were prepared by the free‐radical emulsion copolymerization of a mixture of SiO2 (diameter = 20 nm), styrene, divinyl benzene, 4‐vinylbenzyl N,N‐diethyldithiocarbamate (VBDC), and 2‐hydroxyethyl methacrylate with a radical initiator under UV irradiation. In this copolymerization, the inimer VBDC had the formation of a hyperbranched structure by a living radical mechanism. The particle sizes of such core–shell structures [number‐average particle diameter (Dn) = 35–40 nm] were controlled by the variation of the feed amounts of the monomers and surfactant, or emulsion system. The size distributions were relatively narrow (weight‐average particle diameter/Dn ≈ 1.05). These particles had DC groups on their surface. Subsequently, poly(methyl methacrylate) brush encapsulated SiO2 particles were synthesized by the grafting from a photoinduced atom transfer radical polymerization approach of methyl methacrylate initiated by SiO2‐crosslinked PS particles as a macroinitiator. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
This study examines the selective dispersion of nano‐SiO2 in polystyrene (PS) and polyamide 6 (PA6) blends. With the coupling assistance of 3‐methacryloylpropyl trimethoxysilane (MPS), nano‐SiO2 surfaces are grafted with PS chains of different molecular weights (SiO2–MPS–PS) or reactive random copolymer of styrene (St) and 3‐isopropenyl‐α,α′‐dimethylbenzene isocyanate (TMI) to produce SiO2–MPS–P(St–co–TMI). The isocyanate groups of the reactive copolymer can react with the terminal group of the PA6 to form a graft copolymer, which helps in controlling the location of nano‐SiO2 between the PS and PA6 phases. Field‐emission scanning electron microscopy imaging combined with the rheological method was used to investigate the location and dispersion of nano‐SiO2, as well as the morphology of the PS/PA6 blends, at low nano‐SiO2 loading. Compared with pristine SiO2, the modified SiO2 with different chain lengths adjusted the PA6 phase with refined size and narrow size distribution because of the strong interaction with both phases. The SiO2–MPS–PS with appropriate length is the most effective. The use of nano‐SiO2 along with the reactive compatibilizer provides synergistic effects for improving the compatibilization of PS/PA6 blends. POLYM. ENG. SCI., 57:1301–1310, 2017. © 2017 Society of Plastics Engineers  相似文献   

13.
In the presence of 3‐aminopropyltriethoxysilane (APTES), the transparent and yellowish poly(methyl acrylate‐co‐itaconic anhydride)/TiO2 [P(MA‐co‐Itn)/TiO2] hybrid materials were prepared from the copolymer of methyl acrylate and itaconic anhydride [P(MA‐co‐Itn)] and tetrabutyl titanate (TBT) via a sol–gel process. At first, the triethoxysilane groups were incorporated into the copolymer P(MA‐co‐Itn) as pendant side chains by the aminolytic reaction between the itaconic anhydride units of the copolymer and the amino group of 3‐aminopropyltriethoxysilane (APTES), and then the covalent bonds between the organic and inorganic phases were introduced by the hydrolysis and polycondensation of the triethoxysilane groups on the copolymer with TBT. FTIR analysis proved the existence of the covalent bonds. The influences of APTES on glass transition and morphology of the hybrid materials was studied by differential scanning calorimetry, scanning electron microscope, and atomic force microscope. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1763–1768, 2000  相似文献   

14.
Polystyrene (PS)‐encapsulated magnesium hydroxide (Mg(OH)2) particles with various shell thicknesses were successfully prepared using a method of in situ polymerization of styrene in a high‐speed mixer. High‐impact polystyrene (HIPS)/Mg(OH)2 composites were prepared by melt blending. They were characterized using cone calorimetry, horizontal burning rate, rheology and scanning electron microscopy in order to investigate the effects of the shell thickness of the PS‐encapsulated Mg(OH)2 on the flame retardancy and rheological properties of the resulting composites. Rheological tests showed that the composites containing encapsulated Mg(OH)2 had a stronger solid‐like response at low frequency than that of the sample containing untreated Mg(OH)2. However, with PS/Mg(OH)2 ratio increasing up to 6.0 wt% and above, the dynamic viscosity, loss modulus and storage modulus of HIPS/Mg(OH)2 composites decreased. The optimum PS/Mg(OH)2 ratio, 4.5 wt%, was determined using a new ‘crossover point’ rheological method. The combustion tests showed that compared to the composites containing untreated Mg(OH)2, the fire retardancy of the composites containing PS‐encapsulated Mg(OH)2 was improved significantly. Also, there appeared to be a critical PS/Mg(OH)2 ratio, namely 6.0 wt%, for optimum flame‐retarding properties. However with the continuous increase of PS/Mg(OH)2 ratio, the fire resistance of the composites declined somewhat, which can be explained by acceleration of combustion of the composites due to the introduction of free PS chains of low molecular weight on the surface of Mg(OH)2. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
Nanosilica/polyarylene ether nitriles terminated with phthalonitrile (SiO2/PEN‐t‐Ph) composites were prepared by hot‐press approach. To ensure the nano‐SiO2 can disperse uniformly, the solution casting method combined with ultrasonic dispersion technology had been taken previously. The mass fraction of nano‐SiO2 particles was varied to investigate their effect on the thermal, mechanical, and dielectric properties of the nanocomposites. From scanning electron microscope images, it was found that the nanoSiO2 particles were dispersed uniformly in the PEN‐t‐Ph matrix when the addition of nano‐SiO2 was less than 16.0 wt%. However, when the mass fraction of nano‐SiO2 increased to 20.0 wt%, the nano‐SiO2 particles tend to self‐aggregate and form microns sized particles. Thermal studies revealed that nano‐SiO2 particles did not weaken the thermal stabilities of the PEN‐t‐Ph matrix. Mechanical investigation manifested that the SiO2/PEN‐t‐Ph nanocomposites with 12.0 wt% nano‐SiO2 loading showed the best mechanical performance with tensile strength of 108.2 MPa and tensile modulus of 2107.5 Mpa, increasing by 14% and 19%, respectively as compared with the pure PEN‐t‐Ph film. Dielectric measurement showed that the dielectric constant increased from 3.70 to 4.15 when the nano‐SiO2 particles varied from 0.0 to 20.0 wt% at 1 kHz. Therefore, such composite was a good candidate for high performance materials at elevated temperature environment. POLYM. COMPOS., 35:344–350, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
A series of monomer casting (MC) nylon‐6/SiO2 composites were prepared via in situ polymerization. It was found that the tensile strength, storage modulus, and notched charpy impact strength of the composites were improved and reached maximum at 3–5 wt% loading of SiO2. The α relaxation peak corresponding to the glass transition temperature (Tg) shifted to high temperature with increasing SiO2 content. Addition of SiO2 led to an increase of the melting and crystallization temperatures, and crystallinity. It also reduced the induction time of crystallization, advance the crystallization process of MC nylon‐6, and improve the crystal growth rate. The self‐nucleation crystallization analysis indicated that SiO2 particles played the role of facilitating the crystallization of the matrix mainly via accelerating the generation of crystal nucleus. By addition of SiO2 particles, the fracture surface of MC nylon‐6 changed to distant striations with many yield folds accompanied by a large number of stress whitening, displaying much obvious character of tough fracture. SiO2 particles can be pulled‐out under stress by being covered with MC nylon‐6 resin due to strong interfacial interaction and presented a skin–core structure. © 2012 Society of Plastics Engineers.  相似文献   

17.
Positive temperature coefficient to resistivity (PTCR) characteristics of polystyrene (PS)/Ni‐powder (40 wt%) composites in the presence of multiwall carbon nanotubes (MWCNTs) has been investigated with reference to PS/carbon black (CB) composites. The PS/CB (10 wt%) composites showed a sudden rise in resistivity (PTC trip) at ≈110°C, above the glass transition temperature (Tg) of PS (Tg ≈95°C). Interestingly, the PTC trip temperature of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites appeared at ≈90°C (below Tg of PS), indicating better dimensional stability of the composites at PTC trip temperature. The PTC trip temperature of the composites below the Tg of matrix polymer (PS) has been explained in terms of higher coefficient of thermal expansion (CTE) value of PS than Ni that led to a disruption in continuous network structure of Ni even below the Tg of PS. The dielectric study of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites indicated possible use of the PTC composites as dielectric material. Dynamic mechanical analysis (DMA) and thermogravimetric analysis studies revealed higher storage modulus and improved thermal stability of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites than the PS/CB (10 wt%) composites. POLYM. COMPOS., 33:1977–1986, 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
Solid particles used to toughen polymer can induce shear bands and crazing to release the internal stress of polymer. Herein, SiO2 particles with different sizes were prepared by sol–gel method and modified by triethylenetetramine (TETA) in water. 1, 2, 3 and 4 wt% of SiO2 and SiO2-TETA particles are used to toughen epoxy resin (EP). They can form chemical bond with EP to heighten polymer's storage modulus and glass transition temperature. SiO2-TETA containing active hydrogen atoms is a better cross-linking agent than SiO2. Both SiO2 and SiO2-TETA particles possess obvious strengthening effects on EP. Their toughening effect depends on size. The 100 nm SiO2 nanoparticles showed better toughening performance than 300 or 500 nm SiO2 particles attributing to their higher specific surface area. The impact strength of EP/SiO2-TETA composites with 3 wt% of 100 nm particles is 16.26 kJ/m2, which is 27.67% and 8.00% higher than EP and EP/SiO2 respectively. In addition, its tensile strength is 63.13 MPa, which is higher than the other is too. The barrier effect of solid particles can effectively improve the heat and ultraviolet resistant properties of EP matrix; as a result, their anti-aging property is improved significantly.  相似文献   

19.
Thermoplastic cassava starch (TPS)/poly(vinyl alcohol) (PVA)/silica (SiO2) composites were prepared by a melt‐mixing method. The effects of the content and surface properties of SiO2 on the processing, mechanical properties, thermal stability, morphology, and structure of the TPS/PVA/SiO2 composites were investigated. With increasing SiO2 content, the plasticizing times of the TPS/PVA/SiO2 composites were shortened. After the SiO2 surface was treated with a silane coupling agent (KH550), the plasticizing times of the TPS/PVA/SiO2 composites decreased significantly. The tensile strength, elongation at break, and Young's modulus of the TPS/PVA/SiO2 composites increased. The mechanical properties of the TPS/PVA/SiO2 composites containing treated SiO2 were higher than those with untreated SiO2. The thermal decomposition temperatures of the TPS/PVA/SiO2 composites were improved with the addition of SiO2. The presence of inorganic fillers was beneficial to the improvement of the thermal stability of the polymers. The reaction between the treated SiO2 and the starch molecules was beneficial to the formation of more stable structures. The treated SiO2 indicated good interfacial adhesion and uniform dispersion in the matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44020.  相似文献   

20.
In previous studies, we reported the linear and nonlinear rheological properties of three‐component composites consisting of acrylic polymer (AP), epoxy resin (EP), and various SiO2 contents (AP/EP/SiO2) in the molten state. In this study, the dynamic mechanical properties of AP/EP/SiO2 composites with different particle sizes (0.5 and 8 μm) were investigated in the glass‐transition region. The EP consisted of three kinds of EP components. The α relaxation due to the glass transition shifted to a higher temperature with an increase in the volume fraction (?) for the AP/EP/SiO2 composites having a particle size of 0.5 μm, but the α relaxation scarcely shifted for the composite having a particle size of 8 μm as a general result. This result suggested that the SiO2 nanoparticles that were 0.5 μm in size adsorbed a lot of the low‐glass‐transition‐temperature (Tg) component because of their large surface area. The AP/SiO2 composites did not exhibit a shift in Tg; this indicated that the composite did not adsorb any component. The modulus in the glassy state (Eg) exhibited a very weak &phis; dependence for the AP/EP/SiO2 composites having particle sizes of 0.5 and 8 μm, although Eg of the AP/SiO2 composites increased with &phis;. The AP/EP/SiO2 composites exhibited a peculiar dynamic mechanical behavior, although the AP/SiO2 composites showed the behavior of general two‐component composites. Scanning electron microscopic observations indicated that some components in the EP were adsorbed on the surface of the SiO2 particles. We concluded that the peculiar behavior of the AP/EP/SiO2 composites was due to the selective adsorption of the EP component. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40409.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号