首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
An IEEE 802.16 wireless system can provide broadband wireless access to subscriber stations and operate in mesh mode. The communication between a subscriber station and a base station can pass through one or more intermediate subscriber stations. The IEEE 802.16 standard provides a centralized scheduling mechanism that supports contention‐free and resource‐guarantee transmission services in mesh mode. However, the corresponding algorithm to this schedule is quite primitive in the standard. In this paper, we propose a more efficient way to realize this schedule by maximizing channel utilization. Our designs are divided into two phases: routing and scheduling. First, a routing tree topology is constructed from a given mesh topology by our proposed tree construction algorithm. Secondly, we allocate channel resources to the edges in the routing tree by our proposed scheduling algorithm. To further support the quality‐of‐service schedule, we extend our designs by addressing some issues such as service class, admission control and fairness. Simulation results show the superiority of our proposed algorithms over others. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
IEEE 802.16e is a telecommunication standard technology designed to support a wide variety of multimedia applications. It defines five service classes, each one with its respective QoS requirements, but does not define the scheduling algorithm for these service classes. In this paper, an adaptive packet scheduling algorithm for the uplink traffic in IEEE 802.16e networks is proposed. This algorithm is designed to be completely dynamic, mainly in networks that use various modulation and coding schemes (MCSs). The algorithm is applied directly to the bandwidth request queues in the base station (BS) and aims at supporting the real‐time and non‐real‐time applications. Using a cross‐layer approach and the states of the bandwidth request queues in the BS, a new deadlines based scheme was defined, aiming at limiting the maximum delay to the real‐time applications. Moreover, this algorithm interacts with the polling management mechanisms of the BS and controls the periodicity of sending unicast polling to the real‐time and non‐real‐time service connections, in accordance with the QoS requirements of the applications. The proposed algorithm was evaluated by means of modeling and simulation in environments where various MCSs were used and also in environments where only one type of modulation was used. The simulations showed satisfactory results in both environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The IEEE 802.16e standard specifies the QoS support at the MAC level for wireless broadband access network. To meet the QoS requirements, an efficient scheduling algorithm at base station (BS), which is not defined in the standard, is necessary for slots allocation. In this paper, a Slot‐based BS scheduling algorithm with Maximum Latency Guarantee and Capacity First (SMLG‐CF) is proposed. With SMLG‐CF, the connection request is satisfied with highest slot capacity first. Together with the use of dynamic sub‐frame adjustment, the overall system transmission can be efficiently improved. Through the finer slots calculation and accurate transmission time scheduling, the maximum latency guarantee can be better achieved for urgent requests. In the simulation, we compare the proposed mechanism with the deficit fair priority queue scheduling algorithm and the Highest Urgency First scheduling algorithm. The simulation results reveal that SMLG‐CF outperforms both algorithms from the aspect of maximum latency violation rate and average transmission rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
For wireless mobile multihop relay (MMR) networks, we have chosen orthogonal frequency division multiple access (OFDMA) and time division duplex as a multiple access scheme and a duplex communication technique, respectively. We have also selected nontransparent relay stations (nt‐RSs) as relay nodes to extend the MMR network coverage. Through the nt‐RSs, far‐off subscriber stations (SSs) or hidden SSs can communicate with a base station (BS) that is connected to backhaul networks. In these MMR networks, the way in which a BS and nt‐RSs use OFDMA resources (e.g., OFDMA symbols and subcarriers) and share them might reduce system capacity and network throughput. Therefore, we proposed a new adaptive OFDMA frame structure for both the BS and the nt‐RSs. The proposed scheme is the first approach that incorporates the adaptive technique for wireless MMR networks. Based on the proposed adaptive OFDMA frame structure, an adaptive OFDMA resource allocation for SSs within a BS as well as nt‐RSs was proposed. To derive the maximum OFDMA resource that nt‐RSs can be assigned and to synchronize access zones and relay zones between a superior station and its subordinate nt‐RSs, three properties are introduced: a data relay property, a maximum balance property, and a relay zone limitation property. In addition, we propose max‐min and proportional fairness schemes of the proposed adaptive frame structure. Our numerical analysis and simulations show that the proposed OFDMA allocation scheme performs better than the nonadaptive allocation scheme in terms of network throughput and fairness especially in the asymmetric distribution of subscriber stations between access zones and relay zones in the MMR networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper studies and develops efficient traffic management techniques for downlink transmission at the base station (BS) of multi‐service IP‐based networks by combining quality‐of‐service (QoS) provision and opportunistic wireless resource allocation. A delay‐margin‐based scheduling (DMS) for downlink traffic flows based on the delays that each packet has experienced up to the BS is proposed. The instantaneous delay margin, represented by the difference between the required and instantaneous delays, quantifies how urgent the packet is, and thus it can determine the queuing priority that should be given to the packet. The proposed DMS is further integrated with the opportunistic scheduling (OPS) to develop various queueing architectures to increase the wireless channel bandwidth efficiency. Different proposed integration approaches are investigated and compared in terms of delay outage probability and wireless channel bandwidth efficiency by simulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we propose an urgency‐ and efficiencybased wireless packet scheduling (UEPS) algorithm that is able to schedule real‐time (RT) and non‐real‐time (NRT) traffics at the same time while supporting multiple users simultaneously at any given scheduling time instant. The UEPS algorithm is designed to support wireless downlink packet scheduling in an orthogonal frequency division multiple access (OFDMA) system, which is a strong candidate as a wireless access method for the next generation of wireless communications. The UEPS algorithm uses the time‐utility function as a scheduling urgency factor and the relative status of the current channel to the average channel status as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics while satisfying quality‐of‐service (QoS) requirements of RT traffics. The simulation study shows that the UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modifiedlargest weighted delay first (M‐LWDF), while satisfying the QoS requirements of RT traffics such as average delay and packet loss rate under various traffic loads.  相似文献   

7.
In the last few years, the metropolitan area networks (MAN) have increased their popularity and attracted the interest of the most important research groups all over the world. Among several standards, IEEE 802.16 has taken a relevant role providing high data rate in a big covering range with low implementation costs and multi‐traffic communications. The IEEE 802.16 networks can have a pre‐defined structure, with a central base station (BS) covering a cell in which a variable number of subscriber stations (SSs) can work. This paper deals with the proposal of a quality of service (QoS) driven scheduling algorithm to be used in an IEEE 802.16 network where different traffic types coexist. In particular, the paper mainly focuses on best effort data and VoIP communications, by proposing a scheduling technique that allows an efficient resource management of both traffic types by considering their specific QoS flavor. The performance evaluation has been carried out by considering both the phases of contention and packet scheduling, by means of a theoretical approach and computer simulations. Numerical results show the performance of the proposed algorithm by focusing on a scenario where the BS schedules the best effort and VoIP traffics of several SSs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
IEEE 802.16 standard defines the air interface specifications for broadband access in wireless metropolitan area networks. Although the medium access control signaling has been well-defined in the IEEE 802.16 specifications, resource management and scheduling, which are crucial components to guarantee quality of service performances, still remain as open issues. In this paper, we propose adaptive queue-aware uplink bandwidth allocation and rate control mechanisms in a subscriber station for polling service in IEEE 802.16 broadband wireless networks. While the bandwidth allocation mechanism adaptively allocates bandwidth for polling service in the presence of higher priority unsolicited grant service, the rate control mechanism dynamically limits the transmission rate for the connections under polling service. Both of these schemes exploit the queue status information to guarantee the desired quality of service (QoS) performance for polling service. We present a queuing analytical framework to analyze the proposed resource management model from which various performance measures for polling service in both steady and transient states can be obtained. We also analyze the performance of best-effort service in the presence of unsolicited grant service and polling service. The proposed analytical model would be useful for performance evaluation and engineering of radio resource management alternatives in a subscriber station so that the desired quality of service performances for polling service can be achieved. Analytical results are validated by simulations and typical numerical results are presented.  相似文献   

9.
In order to support the quality‐of‐service (QoS) requirements for real‐time traffic over broadband wireless networks, advanced techniques such as space‐time diversity (STD) and multicarrier direct‐sequence code division multiple access (MC‐DS‐CDMA) are implemented at the physical layer. However, the employment of such techniques evidently affects the QoS provisioning algorithms at the medium access control (MAC) layer. In this paper, we propose a space‐time infrastructure and develop a set of cross‐layer real‐time QoS‐provisioning algorithms for admission control, scheduling, and subchannel‐allocations. We analytically map the parameters characterizing the STD onto the admission‐control region guaranteeing the real‐time QoS. Our analytical analyses show that the proposed algorithms can effectively support real‐time QoS provisioning. Also presented are numerical solutions and simulation results showing that the STD can significantly improve the QoS provisioning for real‐time services over wireless networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In wireless networks, when a mobile roaming station decides to initiate a handover, it should scan multiple channels operated by neighboring base stations (BSs) (or access points (APs)) in order to find an appropriate target base station before the actual handover. In some wireless networks, the active base station is able to provide a list of channels operated by neighboring base stations. However, some of these candidate channels may not be accessible to the mobile station (MS); nonetheless, the MS scans the candidate channels consecutively. For this reason, it may take a relatively long time for the MS to select an adequate target base station channel. This process can degrade the quality of service (QoS) during handovers. To shorten the scanning latency efficiently, in this paper we propose a cooperative channel scanning method whereby groups of MSs scan candidate channels using a dispersive schedule. They then share the scanning results amongst themselves, which results in a fast handover channel decision. To apply the proposed method to a real network environment, we present a group scanning architecture and detailed application scenarios appropriate for IEEE 802.16e worldwide interoperability for microwave access (WiMAX) networks. Numerical analyses and simulation results show that our proposed method achieves a shorter target channel scanning latency. Our method is thus more efficient in terms of scanning time and channel selection accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
To achieve a successful broadband wireless access solution, the IEEE 802.16 subcommittee has released a series of standards for WiMAX (worldwide interoperability for microwave access). From a technical viewpoint, WiMAX is a feasible alternative to the wired Internet access solutions such as cable modem and DSL. Nevertheless, from the commercial viewpoint, whether the promise of WiMAX will be materialized still depends on its revenue rate to telecom operators and its service quality to the subscribers. In such a context, this article addresses two resource management mechanisms in WiMAX access networks, that is, adaptive power allocation (APA) and call admission control (CAC), from the perspectives of both service providers and WiMAX subscribers. APA emphasizes how to share the limited power resource of base station among different WiMAX subscribers and further influences the access bandwidth of each subscriber; CAC highlights how to assign a subscriber's access bandwidth to different types of applications. Moreover, to build a WiMAX access network, APA and CAC have to work cooperatively to provide cross-layer resource management. In this article we focus on the OFDMA-TDD system, which allows high spectrum-utility efficiency on uplink and downlink channels in the asymmetric scenario of "lastmile" Internet access. We conclude the article with an optimization strategy to balance service provider's revenue and subscriber's satisfaction  相似文献   

12.
Because the orthogonal frequency division multiple access physical resource available for scheduling in Worldwide Interoperability for Microwave Access networks is frame by frame, an uplink scheduler located at the base station must efficiently allocate available resources to the subscriber stations in response to constant or bursty data traffic on a per‐frame basis. Available resources for real‐time and nonreal‐time traffics, called frame‐based adaptive bandwidth allocation and minimum guarantee and weight‐based bandwidth allocation, respectively, are proposed in this paper. Moreover, both short‐term and long‐term bandwidth predictions for traffic are incorporated so that the long‐term bandwidth prediction can have sustainable throughput requirement, and the short‐term bandwidth prediction can meet the objectives of low delay and jitter. For the scenarios studied, it shows that system performance of the proposed algorithm is better than the hybrid (earliest deadline first + weighted fair queuing + FIFO) algorithm in terms of packet delay, jitter, throughput, and fairness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes a transmission‐scheduling algorithm for interference management in broadband wireless access networks. The algorithm aims to minimize the cochannel interference using basestation coordination while still maintaining the other quality of service (QoS) requirements such as packet delay, throughput and packet loss. The interference reduction is achieved by avoiding (or minimizing) concurrent transmission of potential dominant interferers. Dynamic slot allocation based on traffic information in other cells/sectors is employed. In order to implement the algorithm in a distributed manner, basestations (BSs) have to exchange traffic information. Both real‐time and non‐real‐time services are considered in this work. Results show that significant reduction in the packet error rate can be achieved without increasing the packet delay at low to medium loading values and with a higher but acceptable packet delay at high loading values. Since ARQ schemes can also be used for packet error rate reduction, we compare the performance of the proposed scheme with that of ARQ. Results indicate that although ARQ is more effective in reducing packet error rate, the proposed algorithm incurs much less packet delay particularly at medium to high loading. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
As public deployment of wireless local area networks (WLANs) has increased and various applications with different service requirements have emerged, fairness and quality of service (QoS) are two imperative issues in allocating wireless channels. This study proposes a fair QoS agent (FQA) to simultaneously provide per-class QoS enhancement and per-station fair channel sharing in WLAN access networks. FQA implements two additional components above the 802.11 MAC: a dual service differentiator and a service level manager. The former is intended to improve QoS for different service classes by differentiating service with appropriate scheduling and queue management algorithms, while the latter is to assure fair channel sharing by estimating the fair share for each station and dynamically adjusting the service levels of packets. FQA assures (weighted) fairness among stations in terms of channel access time without decreasing channel utilization. Furthermore, it can provide quantitative service assurance in terms of queuing delay and packet loss rate. FQA neither resorts to any complex fair scheduling algorithm nor requires maintaining per-station queues. Since the FQA algorithm is an add-on scheme above the 802.11 MAC, it does not require any modification of the standard MAC protocol. Extensive ns-2 simulations confirm the effectiveness of the FQA algorithm with respect to the per class QoS enhancement and per-station fair channel sharing  相似文献   

15.
Wireless communications play an important role in improving transportation environment safety and providing Internet access for vehicles. This paper proposes a QoS-aware two-level uplink dynamic bandwidth allocation (DBA) algorithm for IEEE 802.16j-based vehicular networks. IEEE 802.16j is an extension of standard IEEE 802.16 to support relay mode operation where traffics from/to subscriber stations (SS) are relayed to/from a base station (BS) via a relay station (RS). In such a vehicular network, the IEEE 802.16j BSs are installed along a highway, RSs are installed in large vehicles such as coaches, and the 802.16j interface is equipped on SSs such as individual passengers’ mobile devices within a moving coach. In the proposed DBA algorithm, a utility function, which considers characteristics of different types of services, is designed. The objective of the proposed two-level DBA algorithm is to allocate bandwidth to different types of services from BS to RSs and then from a RS to SSs with given quality of service (QoS) requirements. It aims at maximizing the utility of the overall network and minimizing the average queuing delay of the overall network. The simulation results show the effectiveness and efficiency of the proposed DBA algorithm.  相似文献   

16.
In our previous work, the limitation of standard type I and II power saving in IEEE 802.16e was discussed, and the idea of load‐based power saving (LBPS) was proposed for better power‐saving efficiency. LBPS measures traffic load and adaptively generates proper sleep schedule for the current load. Three LBPS schemes have been proposed for mobile subscriber station (MSS) power saving. In this paper, base station (BS) power saving is taken into consideration, and our previously proposed LBPS schemes, are extended and revised to integrate both BS and MSS in sleep scheduling. Two strategies of integrated power saving, MSS first and BS first, each with associated LBPS schemes are proposed in the paper. A three‐staged concept combining the proposed strategies is also presented to make the best of integrated power saving. A simulation study shows that the proposed schemes can effectively achieve high power‐saving efficiency for both BS and MSS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This letter proposes a new distributed scheduling scheme combined with routing to support the quality of service of real‐time applications in wireless mesh networks. Next, this letter drives average end‐to‐end delay of the proposed scheduling scheme that sequentially schedules the slots on a path. Finally, this letter simulates the time division multiple access network for performance comparison. From the simulation results, when the average number of hops is 2.02, 2.66, 4.1, 4.75, and 6.3, the proposed sequential scheduling scheme reduces the average end‐to‐end delay by about 28%, 10%, 17%, 27%, and 30%, respectively, compared to the conventional random scheduling scheme.  相似文献   

18.
The IEEE 802.16 standard defines three types of scheduling services for supporting real-time traffic, unsolicited grant service (UGS), real-time polling service (rtPS), and extended real-time polling service (ertPS). In the UGS service, the base station (BS) offers a fixed amount of bandwidth to a subscriber station (SS) periodically, and the SS does not have to make any explicit bandwidth requests. The bandwidth allocation in the rtPS service is updated periodically in the way that the BS periodically polls the SS, which makes a bandwidth request at the specified uplink time slots and receives a bandwidth grant in the following downlink subframe. In the ertPS service, the BS keeps offering the same amount of bandwidth to the SS unless explicitly requested by the SS. The SS makes a bandwidth request only if its required transmission rate changes. In this article we study the performance of voice packet transmissions and BS resource utilization using the three types of scheduling services in IEEE 802.16-based backhaul networks, where each SS forwards packets for a number of voice connections. Our results demonstrate that while the UGS service achieves the best latency performance, the rtPS service can more efficiently utilize the BS resource and flexibly trade-off between packet transmission performance and BS resource allocation efficiency; and appropriately choosing the MAC frame size is important in both the rtPS and ertPS services to reduce packet transmission delay and loss rate  相似文献   

19.
Owing to limited wireless network resources, network applications must provide an adaptive quality‐guaranteed service to satisfy user requirements. Different applications are associated with different quality of service (QoS) concerns, as well as different QoS control parameters. This work presents an adaptive QoS algorithm by discussing the QoS specifications of three wireless access technologies, i.e. 3G, WiMAX and WiFi. Based on cross‐layer and cognition concepts, these environmental parameters are integrated with the sensing of spectral and received signal strength from a cognitive radio paradigm. An adaptive QoS algorithm is then proposed to select the optimal access network for services. Simulation results indicate that the proposed adaptive QoS algorithm outperforms available ones in real‐time applications. Compared with traditional algorithms, the proposed algorithm reduces not only the average delay time and jitter for VoIP services to 0.16 s and 0.09 ms, respectively, but also the packet loss ratio for high‐definition video streaming by 3.4%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes the design and analysis of a low‐power medium access control (MAC) protocol for wireless/mobile ATM networks. The protocol – denoted EC‐MAC (energy conserving medium access control) – is designed to support different traffic types with quality‐of‐service (QoS) provisions. The network is based on the infrastructure model where a base station (BS) serves all the mobiles currently in its cell. A reservation‐based approach is proposed, with appropriate scheduling of the requests from the mobiles. This strategy is utilized to accomplish the dual goals of reduced energy consumption and quality of service provision over wireless links. A priority round robin with dynamic reservation update and error compensation scheduling algorithm is used to schedule the transmission requests of the mobiles. Discrete‐event simulation has been used to study the performance of the protocol. A comparison of energy consumption of the EC‐MAC to a number of other protocols is provided. This comparison indicates the EC‐MAC has, in general, better energy consumption characteristics. Performance analysis of the proposed protocol with respect to different quality‐of‐service parameters using video, audio and data traffic models is provided. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号