首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用等温黏度实验和浇铸体力学性能测试来优选自制改性固化剂CUR–1的配比,通过不同升温速率下的固化过程差示扫描量热并对固化物进行傅立叶变换红外光谱分析,确定了体系的固化制度,研制出一种适用于发动机壳体或结构复杂的回转体类结构件的碳纤维湿法缠绕树脂基复合材料的中低温固化环氧树脂体系,用湿法缠绕工艺制作单向纤维缠绕成型复合材料环(NOL环)并进行了性能测试。结果表明:当CUR–1的含量为15份时,树脂体系具有适于湿法缠绕工艺的黏度和使用期,树脂可在80℃完全固化,同时浇铸体拉伸强度为84 MPa,拉伸弹性模量为3.8 GPa,断裂伸长率为5.4%,热变形温度为131℃。该树脂体系与纤维粘结性好,NOL环力学性能高,NOL环拉伸强度为2 451 MPa,拉伸弹性模量为146 GPa,层剪切强度为55 MPa。  相似文献   

2.
利用差示扫描量热分析仪研究了一种快速固化环氧树脂体系的固化工艺参数,确定了以真空辅助树脂灌注工艺制备快速固化环氧树脂/碳纤维复合材料的成型方法,并与常规固化环氧树脂体系制备的碳纤维复合材料进行对比,采用傅里叶变换红外光谱仪对两种材料的树脂基体进行了分析,考察了两种复合材料的纤维含量、孔隙率及力学性能,最后通过扫描电子显微镜观察了快速固化树脂基体与碳纤维的界面结合性。结果表明,快速固化树脂在99℃下固化6 min后固化度可达96%,能够大幅缩减碳纤维复合材料的成型时间,以其制备的碳纤维复合材料拉伸强度比常规固化环氧树脂复合材料高11.20%,弯曲强度高16.92%,纵横剪切强度高7.44%,快速固化树脂与碳纤维界面结合性良好。  相似文献   

3.
Abstract

The morphology and mechanical properties of poly(ethylene terephthalate) (PET)–epoxy blends and the application of these blends in continuous glass fibre reinforced composites have been investigated. Epoxy resin was applied as a reactive solvent for PET to obtain homogeneous solutions with a substantially decreased melt viscosity. The epoxy resin in these solutions was cured using an amine hardener according to two different schedules. In the first, high temperature curing at 260°C preceded low temperature crystallisation of the PET at 180°C. In the second, the PET was allowed to crystallise prior to low temperature curing at 180°C. After cure, all blends revealed a phase separated morphology of dispersed epoxy in a continuous PET matrix. The flexural strength and failure strain of all cured blends showed an increase with increasing epoxy content, whereas the high temperature cured blends exhibited overall lower flexural properties than those cured at the lower temperature. Microstructural analysis and flexural properties of continuous glass fibre reinforced PET–epoxy laminates showed that the composites obtained had a low void content. These PET–epoxy laminates had increased inplane shear strength in comparison with unmodified PET based laminates, indicating considerably increased fibre–matrix adhesion.  相似文献   

4.
固化剂对低温固化环氧建筑胶性能的影响   总被引:1,自引:0,他引:1  
杨欣华  张小冬  黄莹 《粘接》2010,31(7):54-56
研究了6种不同固化体系在-12~0℃温度下的固化情况,探讨了不同固化剂对胶粘剂固化反应速度、压缩强度及钢一钢拉伸剪切强度的影响。试验结果表明,MS-0021固化剂各项性能优于其他固化剂,其压缩强度值为62.56MPa,钢-钢拉伸剪切强度值为1523MPa,可满足胶粘剂的冬季施工要求。  相似文献   

5.
先进树脂基复合材料在航空航天领域应用广泛,采用高效率、低能耗的微波固化工艺以获得令人满意的固化质量的构件,已逐渐引起学者们的关注。将高压引入树脂基复合材料的固化过程中,通过缺陷分析、显微金相、力学性能检测等手段,对先进树脂基复合材料的高压微波固化质量进行实验研究。结果表明,高压微波固化能有效实现树脂基复合材料的固化,与传统热压罐工艺相比,高压微波固化工艺可获得低孔隙、少缺陷、纤维/树脂界面结合较好的固化质量,拉伸强度提高4.82%,层间剪切强度提高10.32%。研究结果为复合材料高压微波固化技术的推广与应用提供了实验数据支撑。  相似文献   

6.
Carbon fiber composites based on tetrafunctional epoxy resin N,N,N′,N′-tetraglycidyl-2,2-bis[4-(4-aminophenoxy)phenyl]propane modified with cardanol were investigated. The differential scanning calorimetric technique was used to study the curing reaction of the neat resins. The dielectric properties of the composites were compared. The use of cardanol in epoxy resins at cardanol/epoxy molar ratios less than 0.3/1 improved the chemical resistance as well as the mechanical properties of the composites, such as the flexural strength and modulus, tensile strength and modulus, and interlaminar shear strength. Higher cardanol contents decreased such properties. The highest properties of the composites were observed with the epoxy-cardanol resin having a cardanol/epoxy molar ratio of 0.3/1. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
碳纤维湿法缠绕用环氧树脂基体研究   总被引:1,自引:0,他引:1  
以TDE-85树脂和AFG-90树脂为主体树脂,混合芳香胺为固化剂,研究了一种适合于碳纤维复合材料湿法缠绕成型的树脂配方。结果表明,该树脂的黏度低(<550 mPa·s)、适用期长,其浇铸体具有优异的力学性能,其拉伸强度为107 MPa,拉伸模量为4.09 GPa,弯曲强度为161 MPa,弯曲模量为3.88 GPa,断裂伸长率超过6%。用其制备的T-700碳纤维缠绕复合材料界面粘接好,NOL环层间剪切强度达到66.8 MPa,拉伸强度达到2.44 GPa。  相似文献   

8.
This article focuses on the analysis of the curing kinetics of carbon‐fiber‐reinforced bismaleimide (BMI) composites during microwave (MW) curing. A nonisothermal differential scanning calorimetry (DSC) method was used to obtain an accurate kinetic model. The degree of curing, chemical characterization, and glass‐transition temperature of the resin and composites cured by thermal and MW heating were analyzed with DSC, Fourier transform infrared spectroscopy, and dynamic mechanical analysis. The experimental results indicate that MW accelerated the crosslinking reaction of the BMI resin and had different effects on the reaction processes, especially for the glass‐transition temperature and chemical bonds. However, the curing reaction rate of the BMI resin decreased when the carbon fibers were added to the BMI resin during thermal and MW curing. According to the experimental results, the curing kinetic model of the BMI composite was used to provide a theoretical foundation for MW curing analysis. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43770.  相似文献   

9.
通过双螺杆挤出机制备了聚丙烯/马来酸酐接枝聚丙烯/环氧树脂/玻璃纤维(PP/PP-g-MAH/EP/GF)复合材料,并研究了PP-g-MAH含量、EP含量及固化剂对复合材料力学性能的影响。结果表明,PP-g-MAH含量为10份,含有固化剂EP的含量为3份时,复合材料的综合力学性能最佳;与不加EP的复合材料相比,其拉伸强度、弯曲强度、冲击强度分别提高了41 %、47 %、86 %。扫描电子显微镜分析表明,EP的加入明显改善了GF和PP基体的黏结强度。  相似文献   

10.
采用CYD-128(E1)、双酚F环氧树脂(E2)、己二醇二缩水甘油醚(E3)为主要原材料配制可用于真空灌注的环氧树脂体系,通过粘度和拉伸、弯曲性能测试及示差扫描量热分析研究了树脂体系的流变特性,固化物力学性能和耐热性。结果表明,E1,E2,E3的质量比为65∶15∶20,固化剂为CYDHD-501,固化条件为70℃/6 h时,体系初始粘度较低,工艺性好,固化后力学性能、热性能优异,能够满足1.5 MW风电叶片用环氧树脂指标要求。  相似文献   

11.
4,4′‐Diazidomethylbiphenyl (DAMBP) and poly(dimethylsilylene‐ethynylenephenyleneethynylene) (PDMSEPE) were thermally polymerized to form a novel silicon‐containing polytriazole resin (PDMSEPE‐DAMBP) by 1,3‐dipolar cycloaddition. Differential scanning calorimetry, FTIR, and 13C‐NMR were used to characterize the curing behaviors of PDMSEPE‐DAMBP resins. The results indicated that the resins could cure at temperatures as low as 80°C. Dynamic mechanical analysis showed that there was a glass transition at 302°C for the cured PDMSEPE‐DAMBP resin. The carbon fiber (T700) reinforced PDMSEPE‐DAMBP composites exhibited excellent mechanical properties at room temperature and high property retention at 250°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The effects of alkalization surface treatment on hemp fiber properties and the properties of hemp fiber–reinforced polyester composites have been studied. Hemp fibers were exposed to 1, 5, and 10% sodium hydroxide (NaOH) solutions. The tensile properties and interfacial shear strength of all alkalized fibers were found to lie within the range of nonalkalized fibers. Laminates were made of alkalized fibers with unsaturated polyester resin, using hand lay‐up and compression moulding. Alkalization of fibers at low concentrations of 1 and 5% resulted in improvements in tensile and fatigue properties of composites made from these fibers, but no such improvements were observed for 10% alkalized fiber composites. The improvements were attributed to improvement in fiber/matrix bonding after this treatment, which was also confirmed by scanning electron microscopy images. No improvement in impact damage tolerance was observed for any of these three alkalized fiber composites. Immersion in distilled water reduced water absorption compared with nonalkalized fiber composites; however, the tensile properties in water were similar to those for nonalkalized fiber composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
选用三乙烯四胺(TETA)、甲基六氢苯酐(MHHPA)、间苯二甲胺(MXDA)作为环氧树脂(EP)的固化剂,制备了一种固化温度为80℃的EP.研究表明,温度为80℃时,MHHPA不能单独固化该EP.少量的TETA或MXDA能够促进MHHPA对EP的固化,研究证明MHHPA和TETA或MXDA间生成了酰胺,TETA或MX...  相似文献   

14.
Differential scanning calorimetry (DSC) technique was used to study the curing reaction of diglycidyl ether of bisphenol A (DGEBA) resin and different di- and trifunctional polyhydric alcohols with phthalic anhydride as curing agent and triethylamine as catalyst with or without fortifier. The thermal stability of the cured products was also studied by thermogravimetric analysis (TGA). Using these data, different glass fiber reinforced epoxy composites were fabricated and their mechanical and electrical properties and their resistance to chemicals were studied as well. Activation energies of curing reactions range within 75.1 to 88.3 kJ mol?1. The cured products have good thermal stability; the composites have good mechanical strength, electrical insulation properties and chemical resistance. 36 to 53% improvement in flexural strength has been observed when fortifier was added to the DGEBA-diluent systems.  相似文献   

15.
将动态硫化技术应用于热塑性树脂/填料/热固性树脂复合体系,制备了动态固化聚丙烯(PP)/马来酸酐接枝PP(PP-g-MAH)/滑石粉(Talc)/环氧树脂(EP)复合材料。研究了动态固化PP/PP-g-MAH/Talc/EP复合材料的界面作用、形态结构、力学性能以及热稳定性。实验结果表明:PP/PP-g—MAH的加入,可明显增加PP/Talc复合材料的界面作用。在动态固化PP/PP-g-MAH/Talc/EP复合材料中,PP和Talc两相界面更加模糊,动态固化EP进一步增加了PP和Talc间的界面作用。当EP的用量超过5份时,部分EP呈颗粒状分布在PP基体中。与PP/PP-g-MAH/Talc/EP和PP/PP-MAH-Talc/EP复合材料相比,动态固化PP/PP-g-MAH/Talc/EP复合材料的冲击强度、拉伸强度和弯曲模量均有明显提高。当EP用量超过5份时,复合材料的冲击强度和断裂伸长率明显降低,但拉伸强度和弯曲模量继续增加。热分析表明动态固化PP/PP-g-MAH/Talc/EP复合材料具有较高的热稳定性。  相似文献   

16.
Two‐dimensional (2D) carbon/carbon (C/C) composites were prepared with phenol‐formaldehyde resin and graphite fabric. After curing, polymer composites were post‐cured in air at 160°C and 230°C for several hours and then all polymer composites were carbonized up to 1500°C. The effect of post‐cure on the microstructure and fracture behavior of the resultant carbon/carbon composites was studied. The post‐cure process was characterized by weight loss. This process promoted the crosslinking and condensation reactions and led to the formation of long‐chain, cross‐linked polymeric structures in the matrix. The post‐cured composites had a greater density than the unpost‐cured composite. This study indicates that a longer post‐curing time and higher post‐curing temperature would limit the shrinkage for the post‐cured composites during carbonization. The improvement in linear shrinkage was 22% to 44%. This process also limited the formation of open pores and decreased the weight loss of the resultant C/C composites. The resultant C/C composites developed from post‐cured composites had a greater flexural strength by 7 to 26% over that developed from unpost‐cured composite.  相似文献   

17.
采用模压成型工艺和拉挤工艺制备了加捻碳纤维增强环氧树脂(EP/CF)复合材料,利用微机控制电液伺服万能试验机和扫描电子显微镜研究了不同后处理温度对EP/CF复合材料的拉伸性能和断面微观形貌的影响。研究表明,相对于高温后处理下的EP/CF复合材料,室温后处理下的EP/CF复合材料的拉伸强度较优,其拉伸强度接近890 MPa;而随着后处理温度的升高,EP/CF复合材料的截面和表面显微硬度值呈先上升后下降趋势,当后处理温度为150℃时,其硬度值最优。随着后处理温度的上升,样品的断面形态由撕拉态变为剪切状态,整个断面转变为脆性断面,EP与CF之间的界面变差。较优后处理工艺为低温后处理;同时,常温固化剂下的EP和CF体系选择后处理工艺优化时,后固化温度应接近固化体系温度进行优化处理。  相似文献   

18.
用邻甲硼酚醛树脂(BoPFR)固化双酚-A环氧树脂(BPAER),制备了含硼酚醛的高性能玻璃钢复合材料.分析了固化过程,研究了固化树脂以及玻璃纤维层压板的力学性能、热性能和电性能.当m(BoPFR)/m(BPAER)为1.0∶0.5时,复合材料的玻璃化转变温度从198.4 ℃下降到134.5℃,材料韧性提高.固化物有良好的耐热性能,当m(BoPFR)/m(BPAER)为1.0∶0.2时,材料在900℃时的残留率为25.83%,热降解动力学符合一级反应动力学;玻璃纤维层压板拉伸强度提高了一倍,而电性能变化不大.  相似文献   

19.
Polythiourethanes based on oligomeric polymercaptans were employed as curing agent of epoxy resin. The epoxy matrices, in the form of castings, were characterized for their mechanical properties such as tensile strength, elongation at break and unnotched Charpy impact strength as per ISO methods. Mechanical studies indicated that the incorporation of polythiourethane into epoxy resin improves the toughness and flexibility with reduction in tensile strength for samples cured at ambient conditions and influences the mechanical and thermal properties according to its percentage content for samples cured at 130°C. The high increase of impact strength was explained by the development of two-phase morphology during the cure process. The results of this study indicate that both the stoichiometry of the curing mixture and the initial thermal condition are of critical importance in governing the curing mechanism, structure of the network, morphology and the final properties of epoxy/polythiourethane compositions.  相似文献   

20.
In this study, the simultaneous effects of both silanized coal fly ash (S‐CFA) and nano/micro glass fiber (nGF) on fracture toughness and mechanical properties of vinyl ester (VE) resin filled with carbon fiber‐based composite materials were investigated. The CFA was treated with (3‐trimethoxysilyl) propyl methacrylate to introduce the methacryloxy groups into the surface of CFA, and was confirmed by using FTIR technique. The nGF and S‐CFA with different weight ratios were well mixed with VE resin by using of high‐speed mechanical stirrer, and ultrasonic technique before using as matrices for fabrication of carbon fiber‐based composite materials via sheet molding compound (SMC) method and hot curing processing. Many characteristics of both cured VE resin composites and carbon fiber‐based composite were examined such as mechanical properties, fracture toughness, and morphology. The results showed that by adding of both 0.1 wt% nGF and 1 wt% S‐CFA into VE resin the tensile strength, tensile modulus, flexural strength, KIC, impact strength as well as the Mode I interlaminar fracture toughness (GIC) of VE composites and carbon fiber based composites get optimum values and increased about 61.39%; 39.83%; 36.21%; 103.1%; 81.79%; 48.61%, respectively when compared with pristine materials. POLYM. ENG. SCI., 59:584–591, 2019. © 2018 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号