首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PANI/CeO2 composites were synthesized using in situ deposition technique by placing fine graded CeO2 in polymerization mixture of aniline. This is the single step polymerization process for the direct synthesis of emeraldine salt phase of polymer. Low frequency dielectric studies were carried out on pressed pellets of PANI/CeO2 with various concentrations of cerium oxide (10, 20, 30, 40, and 50 wt % of CeO2 in PANI). The results are interpreted in terms of polarons and bipolarons, which are responsible for the dielectric relaxation mechanism and frequency dependence of conductivity. It is found that a.c. measurements at room temperature may well serve as a parallel way to the time consuming d.c. conductivity versus temperature technique, to detect the thermal degradation of the transport properties in conducting polymers. It is observed that the charge motion via creation/annihilation of polarons and bipolarons increases as the weight percentage of the composite is increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1403–1405, 2006  相似文献   

2.
以十二烷基苯磺酸为乳化剂及掺杂剂,由二甲苯及水组成乳液,在氯磺化聚乙烯存在下,采用一步原位乳液聚合法制备了聚苯胺/氯磺化聚乙烯(PAn/CSPE)导电复合材料。研究了用熔融法(MP)或溶液法(SP)加工复合物材料的导电性及力学性能,并进行了表征。结果表明,MP法制得的复合材料在导电性及力学性能方面优于SP法制得的复合材料;当PAn质量分数为12%~18%时,MP法复合材料呈现热塑性弹性体行为,拉伸强度为6~8MPa,扯断伸长率大于400%,永久变形小于30%。当PAn质量分数小于18%时,SP法复合材料用闻甲酚二次渗杂后的导电率比原复合材料高出6个数量级,且其导电渗滤阈值由PAn质量分数22%降至3%。  相似文献   

3.
Jiongxin Lu  Byung-Kook Kim 《Polymer》2007,48(6):1510-1516
Polyaniline (PANI)/epoxy composites with different polyaniline (PANI) contents were successfully developed by in situ polymerization of aniline salt protonated with camphorsulfonic acid within epoxy matrices and fully characterized. The influence of PANI loading levels on various properties was also explored. Dielectric and electrical properties of PANI/epoxy composites were studied for samples in parallel plate configuration. A PANI/epoxy composite prepared in this fashion reached a high dielectric constant close to 3000, a dielectric loss tangent less than 0.5 at room temperature and 10 kHz. The hardener type was also found as a critical parameter for the dielectric properties of PANI/epoxy composites. The distribution of the conductive element clusters within the polymer matrix was studied by SEM and correlated to the dielectric behavior of the composite films.  相似文献   

4.
Polyaniline/graphene (PANI/GN) nanocomposites were fabricated via in‐situ oxidative polymerization of aniline in the presence of cetyltrimethylammonium bromide (CTAB) modified graphene (CGN) in 1M hydrochloric acid (HCl) solution. The morphology and structure of PANI/GN samples were investigated by Fourier transform infrared spectrum, X‐ray diffraction, ultraviolet and visible spectrum, thermogravimetric analysis, field‐emission scanning microscope (FE‐SEM), and transmitting electron microscopy (TEM). The conductivities of the PANI/GN nanocomposites were measured using four‐probe electrical conductivity measurement. The results indicated that the GN sheets disperse into the form of monolayer or stack few layers in PANI matrix. The GN sheets serve as a support material for PANI particles and the structure of GN covered with PANI nanoparticles were confirmed by FE‐SEM and TEM. The electrical conductivities of the PANI/GN samples have been improved compared with pure PANI prepared in the similar condition. POLYM. COMPOS., 36:1767–1774, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
In this study, reduced graphene oxide (RGO) has been introduced as conductive filler within polyaniline (PAni) nanotubes (PAniNTs) by in situ chemical reduction method to enhance the properties of PAniNTs. The effect of varied concentration of in situ reduced GO on the structural, thermal, electrical, and dielectric properties of RGO–PAniNTs nanocomposites have been investigated by high resolution transmission electron microscope, X‐ray diffraction, Fourier transform infrared, thermogravimetric analysis, IV characteristics, and impedance analyzer. The enhanced thermal stability of the nanocomposites has been analyzed from the derivative thermogravimetric curves in terms of onset and rapid decomposition temperature. The transport mechanisms have been studied by fitting the nonlinear IV characteristics to the Kaiser model. The dielectric relaxation phenomena have been investigated by permittivity and modulus formalisms. Characteristic relaxation frequency of RGO–PAniNTs nanocomposites shifts toward higher frequency with increasing RGO concentration indicating a distribution in conductivity relaxation. The distribution of relaxation time has been studied by fitting the imaginary modulus spectra of the nanocomposites to Bergman modified KWW function. The ac conductivity spectra are fitted to the Jonscher's power law equation and enhanced conductivity value of 1.26 × 10−3 S cm−1 is obtained for 40 wt % of RGO compared to 1.22 × 10−4 S cm−1 for PAniNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45883.  相似文献   

6.
In this article, we detail an effective way to improve electrical, thermal, and gas barrier properties using a simple processing method for polymer composites. Graphene oxide (GO) prepared with graphite using a modified Hummers method was used as a nanofiller for r‐GO/PI composites by in situ polymerization. PI composites with different loadings of GO were prepared by the thermal imidization of polyamic acid (PAA)/GO. This method greatly improved the electrical properties of the r‐GO/PI composites compared with pure PI due to the electrical percolation networks of reduced graphene oxide within the films. The conductivity of r‐GO/PI composites (30:70 w/w) equaled 1.1 × 101 S m?1, roughly 1014 times that of pure PI and the oxygen transmission rate (OTR, 30:70 w/w) was reduced by about 93%. The Young's modulus of the r‐GO/PI composite film containing 30 wt % GO increased to 4.2 GPa, which was an approximate improvement of 282% compared with pure PI film. The corresponding strength and the elongation at break decreased to 70.0 MPa and 2.2%, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40177.  相似文献   

7.
In this study, polyimide/graphene nanocomposite films which exhibited significant enhancements in mechanical properties and electrical conductivity were successfully fabricated. Graphene oxide (GO) synthesized by Hummer’s method was chemically modified with ethyl isocyanate to give ethyl isocyanate-treated graphene oxide (iGO), which is readily dispersed in N,N′-dimethylformamide (DMF). The iGO dispersion in DMF was then used as media for synthesis of polyimide/functionalized graphene composites (PI/FGS) by an in situ polymerization approach. It was shown that addition of only 0.38 wt% of FGS, Young’s modulus of the PI/FGS composite film was dramatically increased from 1.8 GPa to 2.3 GPa, which is approximately 30% of improvement compared to that of pure PI film, and the corresponding tensile strength was increased from 122 MPa to 131 MPa. In addition, the electrical conductivity of the PI/FGS with this graphene content was increased by more than eight orders of magnitude to 1.7 × 10−5 S m−1.  相似文献   

8.
In this work, a series of polymer composites was prepared by in situ polymerization of methylmethacrylate (MMA) as a monomer and sonicated nanographite particles (∼400 nm) as conductive fillers. The concentration of nanographite particles was changed in the step of 0.25 wt% in the monomer and five composites having a filler concentration of 0.25, 0.50, 0.75, 1, and 1.5 wt% respectively were prepared. The composites were characterized for their morphology, thermal, and dielectric behavior. Room temperature dielectric behavior of the composites was studied at six different frequencies of 100 Hz, 1, 10, 100, 500 kHz, and 1 MHz. Temperature‐dependent dielectric properties was studied in the temperature range from 30 to 150°C at the above frequencies. It was interesting to note that at room temperature dielectric constant (ε′) decreased with increasing concentration of nanographite and reached a minimum at a filler concentration of 0.75 wt%. Dielectric relaxation behavior was observed in the temperature versus tan δ curves. The dielectric peak shifted to higher temperatures with increase in frequency and vice‐versa. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
In this study, we investigated the thermal, dynamic mechanical, mechanical, and electrical properties of polyethylene (PE)–graphene nanosheet (GNS) nanocomposites, with GNS amounts from 0 to 20 wt %, prepared by in situ polymerization. The thermal stability was evaluated by thermogravimetric analysis (TGA) and showed that the addition of GNSs to the polyolefin matrix increased the onset degradation temperature by 30°C. The electrical conductivity, measured by the impedance technique, presented a critical percolation threshold of 3.8 vol % (8.4 wt %) of GNS. A slight decrease in the tensile strength was found. On the other hand, dynamic mechanical analysis showed an increase in the storage modulus of the nanocomposites compared with that of neat PE. The glass‐transition temperature value increased from ?111°C (neat PE) to ?106°C (PE/6.6 wt % GNS). All of these results show that PE became stiffer and thermally more stable and could be transformed from an insulator to a semiconductor material in the presence of GNSs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
We report a new method for the synthesis of polythiophene (PTh)/graphene oxide (GO) nanocomposites by interfacial polymerization. Polymerization occurred at the interface of two immiscible solvents, i.e. n‐hexane containing thiophene and nitromethane containing GO and an initiator. Characterizations were done using Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, and electrochemical and electrical conductivity measurements. Spectroscopic analyses showed successful incorporation of GO in the PTh matrix. Morphological analysis revealed good dispersion of GO sheets in the polymer matrix. The PTh/GO composites showed marked improvements in thermal stability and electrical conductivity (2.7 × 10?4 S cm?1) compared to pure PTh. The composites exhibited excellent electrochemical reversibility compared to pure PTh at a scan rate of 0.1 V s?1. The composites were stable even up to 100 electrochemical cycles, indicating good cycle performance. The specific capacitance of the composites was calculated using cyclic voltammetry and was found to be 99 F g?1. © 2014 Society of Chemical Industry  相似文献   

11.
Polyaniline (PANI) is one of the most common polymers known for its conducting properties. However, poor water solubility limits its applications. In this work, PANI has been functionalized with sulfonic acid groups to produce sulfonated PANI (SPANI) offering excellent solubility in water. To compensate for the decrease of electrical conductivity due to functionalization, SPANI was combined with reduced graphene oxide (RGO) to form SPANI/RGO composites with interesting optical, thermal, and electrical properties. The composites have been characterized using X‐ray diffraction (XRD), field emission scanning electron microscopy, UV–vis absorption spectroscopy, Raman spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray photoelectron spectroscopy, thermogravimetric analysis, cyclic voltammetry, and four probe electrical conductivity measurement. The SPANI/RGO composites show increased thermal stability, reduced optical band gap and improved electrochemical properties compared with the pure polymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42766.  相似文献   

12.
Polyaniline (PANI)/reduced graphene oxide (rGO) composites were synthesized by in situ oxidative polymerization of aniline on reduced graphene sheets. Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, transmission electron microscopy, and scanning electron microscopy were used to characterize the composites. The results indicated PANI/rGO composites were produced and contained covalent bonds between the functional groups of PANI and rGO. A uniform coating of PANI on the rGO sheets had a synergistic effect on the properties of the composites. The electrochemical properties of the PANI/rGO composites produced using different feed ratios of aniline to rGO were studied. The results showed that the composites exhibited a maximum specific capacitance of 797.5 F/g at 0.5 A/g and minimum charge transfer resistance of 0.98 Ω when the feed ratio of aniline to rGO was 2:1. These values were superior to those of pure PANI and rGO. The composites also displayed excellent cycling stability, with specific capacitance retention of 92.43% after 1000 cycles. These stable structural composites show promise for the development of new supercapacitor applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46103.  相似文献   

13.
In this paper, electrical and dielectric properties of multiwall carbon nanotubes (MWCNTs)/insulating polyaniline (PANI) composites were studied. A mixture of MWCNTs and insulating polyaniline was dispersed in an ethanol solution by ultrasonic process, subsequently dried, and was hot-pressed at 200 °C under 30 MPa. Electrical and dielectric properties of the composites were measured. The experimental results show that the dc conductivities of the composites exhibit a typical percolation behavior with a low percolation threshold of 5.85 wt.% MWCNTs content. The dielectric constant of the composites increases remarkably with the increasing MWCNTs concentration, when the MWCNTs concentration was close to percolation threshold. This may be attributed to the critical behavior of the dielectric constant near the percolation threshold as well as to the polarization effects between the clusters inside the composites.  相似文献   

14.
The conductive composites of polyaniline (PAn) and chlorosulfonated polyethylene (CSPE) were prepared by polymerization of aniline in the presence of CSPE, using a direct, one‐step in situ emulsion polymerization method. The polymerization of aniline was performed in an emulsion comprising water and xylene containing CSPE in the presence of dodecylbenzene sulfonic acid, which acts both as a surfactant and a dopant for PAn. The composites can be processed by either melt method (MP) or solution method (SP). Conductivity of the composites obtained by different processing methods shows different percolation thresholds: 14 wt % for MP samples and 22 wt % for SP samples. At the same content of PAn, the conductivity of MP composites is higher than that of SP composites. The relationships between mechanical properties and PAn content obtained by the two different processing methods were also investigated. When PAn content of MP samples is between 12 and 18 wt %, the composites behave like a thermoplastic elastomer with tensile strength at 6–8 MPa, ultimate elongation > 400% and permanent set < 30%. The conductivity of composites obtained by SP method after secondary doping with m‐cresol is about 6 orders of magnitude higher than the original at below 18 wt % PAn content and the percolation threshold for conductivity is lowered to 3 wt % PAn content. The composite shows no electrochromic activity in acidic solution of LiClO4 in propylene carbonate, but after secondary doping exhibits electrochromic activity even in neutral electrolyte. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 845–850, 2000  相似文献   

15.
Water-soluble polyaniline/graphene nanocomposites have been prepared via a simple in situ polymerization of aniline in graphene dispersion. TEM measurement confirmed that polyaniline was homogeneously coated on the graphene sheets. The nanocomposites solution can be used for film fabrication by common technology, such as drop coating. When these different polyaniline/graphene nanocomposites were applied as the counter electrode materials for dye-sensitized solar cells, the short-circuit current density and power-conversion efficiency of the devices were measured to be 12.19 mA cm−2 and 4.46%, respectively, which was comparable to 5.71% for the cell with a Pt counter electrode under the same experimental conditions.  相似文献   

16.
Polyaniline/cobalt oxide composites were synthesized by an in situ chemical polymerization method with ammonium persulfate as an oxidizing agent. This was a single‐step polymerization process for the direct synthesis of the emeraldine salt phase of the polymer. The polymers were characterized with X‐ray diffraction, scanning electron microscopy, and Fourier transform infrared spectral analysis. The formation of mixed phases of the polymer together with the conducting emeraldine salt phase was confirmed by spectroscopic techniques. High‐temperature conductivity measurements showed thermally activated behavior. A change in the resistance was observed with respect to the relative humidity when the pellets were exposed to a wide humidity range of 10–95%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 653–658, 2007  相似文献   

17.
通过Staudenmaier法制备了完全氧化的氧化石墨(GO),并通过高温热膨胀制备了单层石墨烯(graphene).用FT-IR、TG和XRD对GO的氧化程度、含氧官能团进行了表征;Graphene的XRD测试结果证明了单层石墨的存在.利用超声共混法制备了graphene/PV DF介电纳米复合材料.介电性能的测试表...  相似文献   

18.
Chemical modification of wood is a potential way to obtain high quality wood. In this study, methylolurea was used to modify the polar wood by in situ polymerization. The mechanical properties and dimension stability of the wood‐methylourea composites were investigated, and the modified samples were also characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD). The mechanism of in situ polymerization was presented in graphs. The test results showed that the mechanical properties and dimensional stability of natural wood were improved remarkably. FTIR analysis suggested that the methylolurea polymerized with the active groups of wood cell wall. XRD test showed that the crystallinity of wood increased after modification. Finally, the SEM analysis proved that the good interfacial adhesion of wood modifier between wood fiber and polymer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 933‐938, 2013  相似文献   

19.
In this study, polymethyl methacrylate (PMMA)‐coated talc was produced by the in situ polymerization of methyl methacrylate on the talc surface. The polymerization reaction was performed by both batch and semicontinuous emulsion processes. The polymerization kinetics, particle size and distribution, grafting efficiency, and coated‐talc morphology were systematically investigated. It was found that the talc particles have no effect on the polymerization of PMMA. The PMMA produced was found to cover the talc surface well. However, only a small amount can be grafted onto the talc. The size distribution of talc particles treated by semicontinuous emulsion polymerization is more uniform than by batch polymerization. The treated talc was subsequently used as filler in a poly(vinyl chloride) (PVC) matrix, and mechanical properties of the PMMA‐coated‐talc/PVC composites were studied. Morphological structure of PVC‐matrix composites revealed that the PMMA coating on talc improved the dispersion of talc in the PVC matrix and enhanced the interfacial adhesion between the talc and PVC. The mechanical properties of the composites, especially the impact strength, were found to be improved. There appears to be a critical covering thickness of PMMA on the talc surface for optimum toughening. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2105–2112, 2001  相似文献   

20.
Two kinds of conductive polypyrrole composites were prepared by in‐situ polymerization of pyrrole in a suspension of chlorinated polyethylene powder or in a natural rubber latex using ferric chloride as oxidizing agent. The preparation conditions were studied and the results showed that it is better to swell the chlorinated polyethylene powder with the monomer first, followed by addition of the oxidant, than to add the oxidant first, and that conversion can reach 98% for 6 h at room temperature. The conductivity percolation threshold of the composite is about 12%. The composites can be processed repeatedly, exhibiting a maximum tensile strength over 9 MPa and a maximum conductivity near 1 S cm−1. The polypyrrole/natural rubber composites were prepared successfully by using a nonionic surfactant (Peregal O) as stabilizer at pH less than 3 with a molar ratio of FeCl3/pyrrole = 2.5 below 45 °C. The latter composites show a low conductivity percolation threshold about 6%, a maximum tensile strength over 10 MPa and a maximum conductivity over 2 S cm−1. The composites were characterized by FTIR and TGA. The polypyrrole/chlorinated polyethylene composites are very stable in air and almost no decrease of conductivity was observed for over 10 months examined. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号