首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied interfacial shear strength (IFSS) in carbon fiber (CF)‐reinforced poly (phthalazinone ether ketone) (PPEK) composites system, with emphasis on the influence of forming temperature of composite and sizing agent on CFs. To obtain apparent IFSS of CF‐reinforced PPEK composites shaped at various forming temperatures ranged from 20 up to 370°C, microbond test was carried out at single‐fiber composites. Results of microbond test showed that apparent IFSS was directly proportional to the difference between the matrix solidification temperature (forming temperature) and the test temperature and approximately 80% of the apparent IFSS in CF/PPEK composite system was attributed to residual radial compressive stress at the fiber/matrix interface. By sizing CF with sizing agent, the wettability of the fiber by the matrix was improved and the final apparent IFSS was also improved. POLYM. COMPOS., 34:1921–1926, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
We studied thermoplastic poly(phthalazinone ether ketone) (PPEK) resin as a sizing agent on carbon fiber, with emphasis on its thermal stability, surface energy, wetting performance, and interfacial shear strength (IFSS). X‐ray photoelectron spectroscopy characterization was carried out to study the chemical structure of sized/unsized carbon fibers. Scanning electron microscopy and atomic force microscopy were used to characterize surface topography. TGA was used to analyze the thermal stability. Meanwhile, contact angle measurement was applied to analyze the compatibility between the carbon fibers and PPEK and the surface energy of carbon fibers. IFSS of carbon fiber/PPEK composite was examined by microbond testing. It is found that carbon fibers uniformly coated with PPEK resin had better thermal stability and compatibility with PPEK resin than the uncoated fiber. The contact angle is 57.01° for sized fibers, corresponding to a surface energy of 49.96 mJ m?2, much smaller than that for unsized ones with contact angle value of 97.05°. The value of IFSS for sized fibers is 51.49 MPa, which is higher than the unsized fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
A floating catalyst chemical vapor deposition (CVD) unit was utilized to grow CNT onto the surface of carbon fiber (CF). The surface morphology of the resultant fibers, CNT population density and alignment pattern were found to be depended on the CNT growth temperature, growth time, and atmospheric conditions within the CVD chamber. In contrast to the neat‐CF reinforced composites, improved interfacial shear strength (IFSS) between CF and matrix were obtained when the surface of CF was coated by CNT. Particularly, CF treatment condition for CNT‐coating with 700°C reaction temperature and 30 min reaction time has shown a considerable increase in IFSS approximately of 45% over that of the untreated fiber from which it was processed. The proper justification of fiber–matrix adhesion featured by composite interfacial properties was explained through IFSS. POLYM. COMPOS., 36:1941–1950, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
Carbon nanotube (CNT) fibers spun from CNT arrays were used as the reinforcement for epoxy composites, and the interfacial shear strength (IFSS) and fracture behavior were investigated by a single fiber fragmentation test. The IFSS between the CNT fiber and matrix strongly depended on the types of liquid introduced within the fiber. The IFSS of ethanol infiltrated CNT fiber/epoxy varied from 8.32 to 26.64 MPa among different spinning conditions. When long-molecule chain or cross-linked polymers were introduced, besides the increased fiber strength, the adhesion between the polymer modified fiber and the epoxy matrix was also significantly improved. Above all, the IFSS can be up to 120.32 MPa for a polyimide modified CNT fiber, one order of magnitude higher than that of ethanol infiltrated CNT fiber composites, and higher than those of typical carbon fiber/epoxy composites (e.g. 60–90 MPa). Moreover, the composite IFSS is proportional to the tensile strength and modulus of the CNT fiber, and decreases with increasing fiber diameter. The results demonstrate that the interfacial strength of the CNT fiber/epoxy can be significantly tuned by controlling the fiber structure and introducing polymer to optimize the tube–tube interactions within the fiber.  相似文献   

5.
The overall mechanical performance of glass–carbon hybrid fibers reinforced epoxy composites depends heavily upon fiber–matrix interfacial properties and the service temperatures. Fiber‐bundle pull‐out tests of glass (GF) and/or carbon fiber (CF) reinforced epoxy composites were carried out at room and elevated temperatures. Graphene nanoplatelets were added in the interfacial region to investigate their influence on the interfacial shear strength (IFSS). Results show that IFSS of specimens with fiber‐bundle number ratio of GF:CF = 1:2 is the largest among the hybrid composites, and a positive hybridization effect is found at elevated temperatures. IFSS of all the specimens decreases with the increasing of test temperatures, while the toughness shows a contrary tendency. As verified by scanning electron microscopy observations, graphene nanoplatelets on fiber surface could enhance the IFSS of pure glass/carbon and hybrid fibers reinforced epoxy composites at higher temperatures significantly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46263.  相似文献   

6.
利用微脱黏法测定碳纤维/环氧树脂复合材料的界面剪切强度,并分析了造成测试结果分散的影响因素.结果表明:在脱黏过程中,最大脱黏力随碳纤维埋人环氧树脂内长度的增加而线性递增,当埋人长度超过一定值后最大脱黏力趋于稳定:碳纤维与环氧树脂间的接触角对复合材料界面剪切强度有一定影响,接触角越大,界面剪切强度越高;测试结果的分散性与树脂微球的半月板区域、钳口区等因素有关;未经表面处理的碳纤维增强环氧树脂复合材料的界面剪切强度仪为39.4 MPa,低于处理后的复合材料(60.6 MPa).  相似文献   

7.
The influence of the degree of crystallinity on interfacial properties in carbon and SiC two‐fiber reinforced poly(etheretherketone) (PEEK) composites was investigated by the two‐fiber fragmentation test. This method provides a direct comparison of the same matrix conditions. The tensile strength of the PEEK matrix and the interfacial shear strength (IFSS) of carbon or SiC fiber/PEEK exhibited the maximum values at around 30% crystallinity, and then showed a decline. The tensile modulus increased continuously with an increase in the degree of crystallinity. Spherulite sizes in the PEEK matrix became larger as the cooling time from the crystallization temperature increased. Transcrystallinity of carbon fiber/PEEK was developed easily and more densely than with SiC fiber/PEEK. This might have occurred because the unit cell dimensions of the crystallite in the fiber axis direction on the carbon surface was more suitable for making nucleation sites. The IFSS of carbon fiber/PEEK was significantly higher than that of SiC fiber/PEEK because it formed transcrystallinity of IFSS more favorably.  相似文献   

8.
Bioresource natural sisal fiber (SF) was used to prepare single fiber‐reinforced isotactic polypropylene (iPP) composites. Three kinds of interfacial crystalline morphologies, spherulites, medium nuclei density transcrystallinity (MD‐TC) and high nuclei density transcrystallinity (HD‐TC), were obtained in the single fiber‐reinforced composites by implementing quiescent or dynamic shear‐enhanced crystallization and by modulating the compatibility interaction between SF and iPP. The development of interfacial shear strength (IFSS) during the interfacial crystallization process was demonstrated for the first time using a combination of single‐fiber fragmentation testing and optical microscope observation. A close correlation between IFSS and morphological characteristics of interfacial crystallization was well elucidated. The increases in IFSS were very different for spherulitic, MD‐TC and HD‐TC morphologies. The highest IFSS obtained was 28 MPa, after the formation of HD‐TC, which was about 62% of the tensile strength of neat iPP (45 MPa). These results offer powerful and direct evidence that interfacial crystallization could play an important role in the enhancement of interfacial adhesion of real SF/iPP composites. © 2013 Society of Chemical Industry  相似文献   

9.
《Polymer Composites》2017,38(1):27-31
A novel method was developed for grafting poly(acrylamide) (PAAM) on to the carbon fiber (CF) surface via reversible addition–fragmentation chain transfer (RAFT) polymerization to improve the interaction between carbon fibers and epoxy matrix in the composites system. The carbon fibers were first treated with nitric acid and γ‐methacryloxypropyltrimethoxy silane (KH570). Then, the PAAM was grafting onto the carbon fiber surface via RAFT polymerization. The resulted carbon fibers functionalized with PAAM (CF‐PAAM) were characterized by FTIR, XPS, and TGA, and the results revealed that CF‐PAAM were synthesized successfully. The introduction of PAAM chains could make the fiber surface rougher and introduce a large numbers of –NH2 groups, which can improve the interfacial adhesion in the composites. The microbond test results showed that the interfacial shear strength (IFSS) of the composites reinforced by CF‐PAAM has been enhanced about 107%. POLYM. COMPOS., 38:27–31, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
An important aspect in development of multi‐scale reinforced composites is their mass production which can be easily realized. In this article, the sepiolites (Si12O30Mg8(OH)4(OH2)4·8H2O) are directly deposited onto the surface of JH‐T800 carbon fibers for the first time with no need for removal of the commercial sizing agent. The sepiolites adhering to the carbon fibers are uniformly distributed with random orientation, and participated in the formation of high modulus intermediate layer encompassing the carbon fiber. After the deposition of sepiolites, the interfacial shear strengths (IFSS) of the carbon fiber/epoxy composites are significantly improved as shown in single‐fiber composite fragmentation tests. Compared to the commercial carbon fiber composites, the sepiolite‐deposited fiber composites also exhibit obvious improvement in the interlaminar shear strength and flexural strength. As a new kind of multi‐scale reinforcement with industrial application value, the sepiolite‐deposited carbon fibers can further raise the level of mechanical properties of the existing carbon fiber reinforced composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43955.  相似文献   

11.
Physical interactions at carbon nanotube-polymer interface   总被引:2,自引:0,他引:2  
Mechanical properties of carbon nanotube (CNT) reinforced polystyrene rod and CNT reinforced epoxy thin film were studied and the CNT-polymer interface in these composites was examined. Transmission and scanning electron microscopy examinations of CNT/polystyrene (PS) and CNT/epoxy composite showed that these polymers adhered well to CNT at the nanometer scale. Molecular mechanics simulations and elasticity calculations were used to quantify some of the important interfacial characteristics that critically control the performance of a composite material. In the absence of chemical bonding between CNT and the matrix, it is found that the non-bond interactions, consist of electrostatic and van der Waals forces, result in CNT-polymer interfacial shear stress (at 0 K) of about 138 and 186 MPa, respectively, for CNT/epoxy and CNT/PS. The high interfacial shear stress calculated, about an order of magnitude higher than micro fiber reinforced composites, is believed attributed to intimate contact between the two solid phases at the molecular scale. Simulations and calculations also showed that local non-uniformity of CNT and mismatch of the coefficients of thermal expansions between CNT and polymer matrix also promote the stress transfer ability between the two.  相似文献   

12.
The conductive polyamide 66 (PA66)/carbon nanotube (CNT) composites reinforced with glass fiber‐multiwall CNT (GF‐MWCNT) hybrids were prepared by melt mixing. Electrostactic adsorption was utilized for the deposition of MWCNTs on the surfaces of glass fibers (GFs) to construct hybrid reinforcement with high‐electrical conductivity. The fabricated PA66/CNT composites reinforced with GF‐MWCNT hybrids showed enhanced electrical conductivity and mechanical properties as compared to those of PA66/CNT or PA66/GF/CNT composites. A significant reduction in percolation threshold was found for PA66/GF‐MWCNT/CNT composite (only 0.70 vol%). The morphological investigation demonstrated that MWCNT coating on the surfaces of the GFs improved load transfer between the GFs and the matrix. The presence of MWCNTs in the matrix‐rich interfacial regions enhanced the tensile modulus of the composite by about 10% than that of PA66/GF/CNT composite at the same CNT loading, which shows a promising route to build up high‐performance conductive composites. POLYM. COMPOS. 34:1313–1320, 2013. © 2013 Society of Plastics Engineers  相似文献   

13.
In this article, modification of carbon fiber surface by carbon based nanofillers (multi-walled carbon nanotubes [CNT], carbon nanofibers, and multi-layered graphene) has been achieved by electrophoretic deposition technique to improve its interfacial bonding with epoxy matrix, with a target to improve the mechanical performance of carbon fiber reinforced polymer composites. Flexural and short beam shear properties of the composites were studied at extreme temperature conditions; in-situ cryo, room and elevated temperature (−196, 30, and 120°C respectively). Laminate reinforced with CNT grafted carbon fibers exhibited highest delamination resistance with maximum improvement in flexural strength as well as in inter-laminar shear strength (ILSS) among all the carbon fiber reinforced epoxy (CE) composites at all in-situ temperatures. CNT modified CE composite showed increment of 9% in flexural strength and 17.43% in ILSS when compared to that of unmodified CE composite at room temperature (30°C). Thermomechanical properties were investigated using dynamic mechanical analysis. Fractography was also carried out to study different modes of failure of the composites.  相似文献   

14.
In this preliminary study, micromechanical techniques were used to compare the interfacial properties of both carbon and glass fiber composites with two structurally different epoxy matrices (YD‐114 and YDF‐175) at ambient and relatively low temperatures (25°C and −10°C). Tensile modulus of elasticity for both epoxies was higher at lower temperature. Although both fibers exhibited more bimodality at lower temperature than at ambient temperature, glass fiber composites exhibited a statistically greater improvement in tensile strength. This may be attributed to differences in inherent flaws and rigidity. A decrement in stress was observed for YDF‐175 epoxy composites under cyclic loadings at both temperatures, which was attributed to lower interfacial shear strength (IFSS). In contrast to the IFSS of conventional YD‐114 epoxy composites, the IFSS of both the carbon and glass fibers/YDF‐175 epoxy composites studied was higher at the lower temperature. The microfailure pattern observed in microdroplet pullout tests was consistent with the other IFSS results. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

15.
Interest in carbon fiber reinforced composites based on polyaryl ether ketones (PAEKs) continues to grow, and is driven by their increasing use as metal replacement materials in high temperature, high‐performance applications. Though these materials have seen widespread use in oil, gas, aerospace, medical and transportation industries, applications are currently limited by the thermal and mechanical properties of available PAEK polymer chemistries and their carbon fiber composites as well as interfacial bonding with carbon fiber surfaces. This article reviews the state of the art of PAEK polymer chemistries, mechanical properties of their carbon fiber reinforced composites, and interfacial engineering techniques used to improve the fiber‐matrix interfacial bond strength. We also propose a roadmap to develop the next generation of high‐performance long fiber thermoplastic composites based on PAEKs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44441.  相似文献   

16.
Interests in improving poor interfacial adhesion in carbon fiber‐reinforced polymer (CFRP) composites has always been a hotspot. In this work, four physicochemical surface treatments for enhancing fiber/matrix adhesion are conducted on carbon fibers (CFs) including acid oxidation, sizing coating, silane coupling, and graphene oxide (GO) deposition. The surface characteristics of CFs are investigated by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, interfacial shear strength, and interlaminar shear strength. The results showed that GO deposition can remarkably promote fiber/matrix bonding due to improved surface reactivity and irregularity. In comparison, epoxy sizing and acid oxidation afford enhancement of IFSS owing to effective molecular chemical contact and interlocking forces between the fiber and the matrix. Besides, limited covalent bonds between silane coupling and epoxy matrix cannot make up for the negative effects of excessive smoothness of modified CFs, endowing them inferior mechanical properties. Based on these results, three micro‐strengthening mechanisms are proposed to broadly categorize the interphase micro‐configuration of CFRP composite, namely, “Etching” “Coating”, and “Grafting” modifications, demonstrating that proper treatments should be chosen for combining optimum interfacial properties in CFRP composites. POLYM. ENG. SCI., 59:625–632, 2019. © 2018 Society of Plastics Engineers  相似文献   

17.
Carbon fiber‐reinforced epoxy composites, with incorporated carboxylic multiwall carbon nanotubes (CNTs), were prepared using vacuum‐assisted resin infusion (VARI) molding, and the in‐plane and out‐of‐plane properties, including mode‐I (GIc) and mode‐II (GIIc) interlaminar fracture toughness, interlaminar shear strength (ILSS), tensile, and flexural properties were measured. A novel spraying technique, which sprays a kind of epoxy resin E20 with high viscosity after spraying the CNTs, was adopted to deposit the CNTs on the surface of carbon fiber fabric. The E20 was used to anchor CNTs on the fabric surface, avoiding that the deposited CNTs were removed by the infusing resin during VARI process. The spraying processing, including spraying amount and spraying sequence, was optimized based on the distribution of CNTs on the fibers. After that, three composite specimen groups were fabricated using different carbon fiber fabrics, including as‐received, CNT‐deposited with E20, and CNT‐deposited without E20. The effects of CNTs on the processing quality and mechanical properties of carbon fiber‐reinforced polymer composites were studied. The experimental results show that all studied laminates have uniform thickness with designed values and no obvious defects form inside the laminates. Compared with the composite without CNTs, depositing CNTs with E20 increases by 24% in the average propagation GIc, by 11% in the propagation GIIc and by 12% in the ILSS, while it preserves the in‐plane mechanical properties, However, depositing CNTs without E20 reduces interlaminar fracture toughness. These phenomena are attributed to the differences in the distribution of CNTs and the fiber/matrix interfacial bonding for different spraying processing. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

18.
Tzeng  Lin 《Carbon》1999,37(12):2011
Effect of interfacial carbon layers on the mechanical properties and fracture behavior of two-dimensional carbon fiber fabrics reinforced carbon matrix composites were investigated. Phenolic resin reinforced with two-dimensional plain woven carbon fiber fabrics was used as starting materials for carbon/carbon composites and was prepared using vacuum bag hot pressing technique. In order to study the effect of interfacial bonding, a carbon layer was applied to the carbon fabrics in advance. The carbon layers were prepared using petroleum pitch with different concentrations as precursors. The experimental results indicate that the carbon/carbon composites with interfacial carbon layers possess higher fracture energy than that without carbon layers after carbonization at 1000°C. For a pitch concentration of 0.15 g/ml, the carbon/carbon composites have both higher flexural strength and fracture energy than composites without carbon layers. Both flexural strength and fracture energy increased for composites with and without carbon layers after graphitization. The amount of increase in fracture energy was more significant for composites with interfacial carbon layers. Results indicate that a suitable pitch concentration should be used in order to tailor the mechanical behavior of carbon/carbon composites with interfacial carbon layers.  相似文献   

19.
Multi‐walled carbon nanotubes (CNT) were compounded with PVC by a melt blending process based on fusion behaviors of PVC. The effects of CNT content on the flexural and tensile properies of the PVC/CNT composites were evaluated in order to optimize the CNT content. The optimized CNT‐reinforced PVC was used as a matrix in the manufacture of wood‐plastic composites. Flexural, electrical, and thermal properties of the PVC/wood‐flour composites were evaluated as a function of matrix type (nonreinforced vs. CNT‐reinforced). The experimental results indicated that rigid PVC/wood‐flour composites with properties similar to those of solid wood can be made by using CNT‐reinforced PVC as a matrix. The CNT‐reinforced PVC did not influence the electrical and thermal conductivity of the PVC/wood‐flour composites. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers.  相似文献   

20.
The properties of carbon fiber reinforced polymer composites (CFRPs) will benefit greatly from improving interfacial performance. In this study, the interfacial properties of the PEI-CNT-CF/PP composite was improved by coating polyethyleneimine (PEI) modified carboxylic multi-walled carbon nanotubes (CNTs) in aqueous solution (PEI-CNT) onto the surface of the CF (PEI-CNT-CF) to form a network structure. The network formation changed the chemical characteristics and compatibility of CF surface by introducing amine (imine) groups, and could induce transcrystallization (TC) at interface of composite. These positive factors led to a 24.6% increasement in the interfacial shear strength (IFSS) of PEI-CNT-CF/PP, and further resulted in 16.2% and 5.3% improvement in tensile and flexural strength, respectively. SEM images of the fracture surface demonstrated a significant improvement in the interfacial adhesion between PEI-CNT-CF and PP resin. These results indicated that the PEI-CNT was a great choice to strengthen the interface of CF/PP system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号