首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Tandem configurations, in which two cells are stacked and connected in series, offer a viable approach to further increase the power conversion efficiency (PCE) of organic solar cells. To enable the future rational design of new materials it is important to accurately assess the contributions of individual subcells. Such accurate measurement of the external quantum efficiency (EQE) of the subcells of two‐terminal organic or polymer tandem solar cells poses specific challenges, caused by two characteristics of these cells, i.e. a sub‐linear light intensity dependence of the current and a field‐assisted charge collection. These properties necessitate that EQE experiments are carried out under representative illumination conditions and electrical bias to maintain short‐circuit conditions for the addressed subcell. We describe a method to determine the magnitudes of the bias illumination and bias voltage during EQE measurements, based on the behavior of single junction cells and optical modeling. The short‐circuit current densities of the subcells obtained by convolution of the EQE with the AM1.5G solar spectrum are consistent with those obtained from optical modeling and correctly predict the current density–voltage characteristics of the tandem cell under AM1.5G conditions.  相似文献   

2.
Tandem polymer photovoltaic cells with the subcells having different absorption characteristics in series connection are widely investigated to enhance absorption coverage over the solar spectrum. Herein, we demonstrate efficient tandem polymer photovoltaic cells with the two stacked subcells comprising different band-gap conjugated polymer and fullerene derivative bulk heterojunction in parallel connection. A semitransparent metal layer combined with inorganic semiconductor compounds is utilized as the intermediate electrode of the two stacked subcells to create the required built-in potential for collecting photo-generated charges. The short-circuit current of the stacked cell is the sum of the subcells and the open-circuit voltage is similar to the subcells.  相似文献   

3.
A power conversion efficiency of up to 8.91% is obtained for a solution‐processed polymer tandem solar cells based on a large‐bandgap polymer, poly(4,4‐dioctyldithieno(3,2‐b:2′,3′‐d)silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl) with a polymeric interconnecting layer to electrically connect the front and rear subcells, demonstrating that proper device and interface engineering are can improve the performance of polymer tandem solar cells.  相似文献   

4.
The fabrication of a solution‐processed polymer tandem cell by stacking two single cells in series is reported by de Boer and co‐workers on p. 1897. The bottom and top cell are complementary with respect to their absorption spectra and the layer thickness of the bottom cell was optimized in order to create an optical cavity that efficiently transmits the required wavelength for the top cell. The combination of this tandem architecture with more efficient small‐bandgap materials will enable the realization of highly efficient organic solar cells. A solution‐processed polymer tandem cell fabricated by stacking two single cells in series is demonstrated. The two bulk‐heterojunction subcells have complementary absorption maxima at λmax ~ 850 nm and λmax ~ 550 nm, respectively. A composite middle electrode is applied that serves both as a charge‐recombination center and as a protecting layer for the first cell during spin‐coating of the second cell. The subcells are electronically coupled in series, which leads to a high open‐circuit voltage of 1.4 V, equal to the sum of each subcell. The layer thickness of the first (bottom) cell is tuned to maximize the optical absorption of the second (top) cell. The performance of the tandem cell is presently limited by the relatively low photocurrent generation in the small‐bandgap polymer of the top cell. The combination of our tandem architecture with more efficient small‐bandgap materials will enable the realization of highly efficient organic solar cells in the near future.  相似文献   

5.
A solution‐processed polymer tandem cell fabricated by stacking two single cells in series is demonstrated. The two bulk‐heterojunction subcells have complementary absorption maxima at λmax ~ 850 nm and λmax ~ 550 nm, respectively. A composite middle electrode is applied that serves both as a charge‐recombination center and as a protecting layer for the first cell during spin‐coating of the second cell. The subcells are electronically coupled in series, which leads to a high open‐circuit voltage of 1.4 V, equal to the sum of each subcell. The layer thickness of the first (bottom) cell is tuned to maximize the optical absorption of the second (top) cell. The performance of the tandem cell is presently limited by the relatively low photocurrent generation in the small‐bandgap polymer of the top cell. The combination of our tandem architecture with more efficient small‐bandgap materials will enable the realization of highly efficient organic solar cells in the near future.  相似文献   

6.
One strategy to harvest wide spectral solar energy is to stack different bandgap materials together in a tandem solar cell. Here, it is demonstrated that CVD grown graphene film can be employed as intermediate layer (IML) in tandem solar cells. Using MoO3‐modified graphene IML, a high open circuit voltage (Voc) of 1 V and a high short‐circuit current density (Jsc) of 11.6 mA cm‐2 could be obtained in series and parallel connection, respectively, in contrast to a Voc of 0.58 V and Jsc of 7.6 mA cm‐2 in single PV cell. The value of Voc (Jsc) in the tandem cell is very close to the sum of Voc (Jsc) attained from two single subcells in series (parallel), which confirms good ohmic contact at the photoactive layer/MoO3‐modified graphene interface. Work function engineering of the graphene IML with metal oxide is essential to ensure good charge collection from both subcells.  相似文献   

7.
For better conversion of sunlight into electricity, advanced architectures of multi‐junction (MJ) solar cells include increasing numbers of subcells. The Achilles' heel of these cells lies in their increased sensitivity to the spectral distribution of sunlight, which is likely to significantly alter their performance during real working operation. This study investigates the capacity of MJ solar cells comprising up to 10 subcells to accommodate a wide range of spectral characteristics of the incident radiation. A systematic study is performed, aimed at a realistic estimation of the energy output of MJ‐based concentrating photovoltaic systems at characteristic locations selected to represent a large range of climatic conditions. We show that optimal MJ architectures could have between 4 and 7 subcells. Beyond seven subcells, the slight gains in peak efficiency are likely outweighed by detrimental increases in dependence on local conditions and in annual yield variability. The relevance of considering either conversion efficiency or modeled energy output as the most appropriate indicator of the cell performance, when considering advanced architectures of MJ solar cells, is also discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Tandem solar cells (TSCs) comprising stacked narrow‐bandgap and wide‐bandgap subcells are regarded as the most promising approach to break the Shockley–Queisser limit of single‐junction solar cells. As the game‐changer in the photovoltaic community, organic–inorganic hybrid perovskites became the front‐runner candidate for mating with other efficient photovoltaic technologies in the tandem configuration for higher power conversion efficiency, by virtue of their tunable and complementary bandgaps, excellent photoelectric properties, and solution processability. In this review, a perspective that critically dilates the progress of perovskite material selection and device design for perovskite‐based TSCs, including perovskite/silicon, perovskite/copper indium gallium selenide, perovskite/perovskite, perovskite/CdTe, and perovskite/GaAs are presented. Besides, all‐inorganic perovskite CsPbI3 with high thermal stability is proposed as the top subcell in TSCs due to its suitable bandgap of ≈1.73 eV and rapidly increasing efficiency. To minimize the optical and electrical losses for high‐efficiency TSCs, the optimization of transparent electrodes, recombination layers, and the current‐matching principles are highlighted. Through big data analysis, wide‐bandgap perovskite solar cells with high open‐circuit voltage (Voc) are in dire need in further study. In the end, opportunities and challenges to realize the commercialization of TSCs, including long‐term stability, area upscaling, and mitigation of toxicity, are also envisioned.  相似文献   

9.
Recently organic tandem solar cells with record efficiency had been shown comprising identical absorber materials in both subcells. Such structures pose new challenges for characterization. The standard test methods for measuring spectral response of tandem solar cells can not be applied. The standard procedures demand for different bias illumination during measuring spectral response allowing to select the subcell being current limiting. With subcells comprising identical absorber materials, thus having identical absorption spectra, such a selection is not trivial. In this paper, we show that with the help of detailed optical simulations of such tandem organic solar cells, their characterization is possible, and we apply the proposed method to a sample structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A GaInP/Ga(In)As/GaNAsSb/Ge 4J solar cell grown using the combined MOVPE + MBE method is presented. This structure is used as a test bench to assess the effects caused by the integration of subcells and tunnel junctions into the full 4J structure. A significant degradation of the Ge bottom subcell emitter is observed during the growth of the GaNAsSb subcell, with a drop in the carrier collection efficiency at the high energy photon range that causes a ~15% lower Jsc and a Voc drop of ~50 mV at 1‐sun. The Voc of the GaNAsSb subcell is shown to drop by as much as ~140 mV at 1‐sun. No degradation in performance is observed in the tunnel junctions, and no further degradation is neither observed for the Ge subcell during the growth of the GaInP/Ga(In)As subcells. The hindered efficiency potential in this lattice‐matched 4J architecture due to the degradation of the Ge and GaNAsSb subcells is discussed.  相似文献   

11.
To further increase the efficiency of multijunction thin‐film silicon (TF‐Si) solar cells, it is crucial for the front electrode to have a good transparency and conduction, to provide efficient light trapping for each subcell, and to ensure a suitable morphology for the growth of high‐quality silicon layers. Here, we present the implementation of highly transparent modulated surface textured (MST) front electrodes as light‐trapping structures in multijunction TF‐Si solar cells. The MST substrates comprise a micro‐textured glass, a thin layer of hydrogenated indium oxide (IOH), and a sub‐micron nano‐textured ZnO layer grown by low‐pressure chemical vapor deposition (LPCVD ZnO). The bilayer IOH/LPCVD ZnO stack guarantees efficient light in‐coupling and light trapping for the top amorphous silicon (a‐Si:H) solar cell while minimizing the parasitic absorption losses. The crater‐shaped micro‐textured glass provides both efficient light trapping in the red and infrared wavelength range and a suitable morphology for the growth of high‐quality nanocrystalline silicon (nc‐Si:H) layers. Thanks to the efficient light trapping for the individual subcells and suitable morphology for the growth of high‐quality silicon layers, multijunction solar cells deposited on MST substrates have a higher efficiency than those on single‐textured state‐of‐the‐art LPCVD ZnO substrates. Efficiencies of 14.8% (initial) and 12.5% (stable) have been achieved for a‐Si:H/nc‐Si:H tandem solar cells with the MST front electrode, surpassing efficiencies obtained on state‐of‐the‐art LPCVD ZnO, thereby highlighting the high potential of MST front electrodes for high‐efficiency multijunction solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The effects of luminescence coupling on the external quantum efficiency (EQE) measurement of an InGaP/InGaAs/Ge triple junction solar cell were investigated. A small signal model was used to study the interaction of the subcells during EQE measurement. It was found that an optical–electrical feedback mechanism results in EQE measurement artifacts. Measurements of luminescence from the InGaP p–n junction are also performed to quantitatively determine the strength of the luminescence coupling. These results offer a more thorough and comprehensive interpretation of EQE measurement results that are needed for the design and accurate performance evaluation of high‐efficiency multijunction solar cells. The effects demonstrated here can also be used to measure the spontaneous emission efficiency of the subcells, which is useful for nondestructive assessment of multijunction solar cell material quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A multipurpose interconnection layer based on poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS), and d ‐sorbitol for monolithic perovskite/silicon tandem solar cells is introduced. The interconnection of independently processed silicon and perovskite subcells is a simple add‐on lamination step, alleviating common fabrication complexities of tandem devices. It is demonstrated experimentally and theoretically that PEDOT:PSS is an ideal building block for manipulating the mechanical and electrical functionality of the charge recombination layer by controlling the microstructure on the nano‐ and mesoscale. It is elucidated that the optimal functionality of the recombination layer relies on a gradient in the d ‐sorbitol dopant distribution that modulates the orientation of PEDOT across the PEDOT:PSS film. Using this modified PEDOT:PSS composite, a monolithic two‐terminal perovskite/silicon tandem solar cell with a steady‐state efficiency of 21.0%, a fill factor of 80.4%, and negligible open circuit voltage losses compared to single‐junction devices is shown. The versatility of this approach is further validated by presenting a laminated two‐terminal monolithic perovskite/organic tandem solar cell with 11.7% power conversion efficiency. It is envisioned that this lamination concept can be applied for the pairing of multiple photovoltaic and other thin film technologies, creating a universal platform that facilitates mass production of tandem devices with high efficiency.  相似文献   

14.
Fully solution‐processed Al‐doped ZnO/silver nanowire (AgNW)/Al‐doped ZnO/ZnO multi‐stacked composite electrodes are introduced as a transparent, conductive window layer for thin‐film solar cells. Unlike conventional sol–gel synthetic pathways, a newly developed combustion reaction‐based sol–gel chemical approach allows dense and uniform composite electrodes at temperatures as low as 200 °C. The resulting composite layer exhibits high transmittance (93.4% at 550 nm) and low sheet resistance (11.3 Ω sq‐1), which are far superior to those of other solution‐processed transparent electrodes and are comparable to their sputtered counterparts. Conductive atomic force microscopy reveals that the multi‐stacked metal‐oxide layers embedded with the AgNWs enhance the photocarrier collection efficiency by broadening the lateral conduction range. This as‐developed composite electrode is successfully applied in Cu(In1‐x,Gax)S2 (CIGS) thin‐film solar cells and exhibits a power conversion efficiency of 11.03%. The fully solution‐processed indium‐free composite films demonstrate not only good performance as transparent electrodes but also the potential for applications in various optoelectronic and photovoltaic devices as a cost‐effective and sustainable alternative electrode.  相似文献   

15.
The radiation response of In0.5Ga0.5P, GaAs, In0.2Ga0.8As, and In0.3Ga0.7As single‐junction solar cells, whose materials are also used as component subcells of inverted metamorphic triple‐junction (IMM3J) solar cells, was investigated. All four types of cells were prepared using a simple device layout and irradiated with high‐energy electrons and protons. The essential solar cell characteristics, namely, light‐illuminated current–voltage (LIV), dark current–voltage (DIV), external quantum efficiency (EQE), and two‐dimensional photoluminescence (2D‐PL) imaging were obtained before and after irradiation, and the corresponding changes due to the irradiations were compared and analyzed. The degradation of the cell output parameters by electrons and protons were plotted as a function of the displacement damage dose. It was found that the radiation resistance of the two InGaAs cells is approximately equivalent to that of the InGaP and GaAs cells from the materials standpoint, which is a result of different initial material qualities. However, the InGaAs cells show relatively low radiation resistance to electrons especially for the short‐circuit current (I sc). By comparing the degradation of I sc and EQE, data, It was confirmed that the greater decrease of minority‐carrier diffusion length in InGaAs compared with InGaP and GaAs causes severe degradation in the photo‐generation current of the InGaAs bottom subcells in IMM3J structures. Additionally, it was found that the InGaP and two InGaAs cells exhibited equivalent radiation resistance of V oc, but radiation response mechanisms of V oc are thought to be different. Further analytical studies are necessary to interpret the observed radiation response of the cells. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   

16.
We characterize the radiation‐induced damage of InGaP/GaAs/Ge solar cells for various proton irradiation energies and fluences using conventional current‐voltage (I‐V) measurements, external quantum efficiency, and a noncontact time‐resolved photoluminescence (PL) technique. From the I‐V curves, we obtain the conversion efficiency of the entire device. The external quantum efficiency showed that the short‐circuit current is only determined by the top InGaP subcell. To obtain accurate information about the point of maximum power, a new PL technique is introduced. The PL time decays of the InGaP and GaAs subcells are measured to obtain the characteristic decay time constants of carrier separation and recombination. We empirically verify that the time‐resolved PL method can be used to predict the electrical conversion efficiency of the subcells. We find that the limiting subcell at the point of maximum power is different from that for short‐circuit current. Radiation damage in unexpected regions of the device is revealed using this optical method.  相似文献   

17.
晶圆直接键合技术由于能将表面洁净的两个晶圆集成到一起,从而可以用来制备晶格失配 III-V族多结太阳电池。为了制备GaInP/GaAs/InGaAsP/InGaAs四结太阳电池,需采用具有低电阻率的GaAs/InP键合界面,从而实现GaInP/GaAs和InGaAsP/InGaA上下两个子电池的电学导通。我们设计并研究了具有不同掺杂元素和掺杂浓度的三种键合界面,并采用IV曲线对其电学性质进行表征。此外,对影响键合界面质量的关键工艺过程进行了研究,主要包括表面清洗技术和键合参数优化,例如键合温度、键合压力和键合时间等。最终制备出的键合四结GaInP/GaAs/InGaAsP/InGaAs太阳电池在AM0条件下效率最高达33.2%。  相似文献   

18.
It is an effective way to enhance device performance of polymer solar cells (PSCs) by using a tandem structure that combines two or more solar cells. For tandem PSCs, the buffer layer plays an important role in determining the device performance. The most commonly used buffer layers, such as PEDOT:PSS, TiOx, and ZnO, need thermal treatments that are not beneficial for reducing the fabrication complexity and cost of tandem PSCs. It is necessary to develop tandem PSCs fabricated by a thermal-treatment-free process. In this paper, we report high performance thermal-treatment-free tandem PSCs by developing PFN as buffer layers for both subcells. A power conversion efficiency (PCE) of 10.50% and a high fill factor of 72.44% were achieved by stacking two identical PTB7:PC71BM subcells. When adopting a rear PTB7-Th:PC71BM subcell, the highest PCE of 10.79% was further obtained for the tandem devices. The thermal-treatment-free process is especially applicable to flexible devices, in which plastic substrates are usually used.  相似文献   

19.
The design and fabrication of solar‐to‐chemical energy conversion devices are enabled through interweaving multiple components with various morphologies and unique functions using a versatile layer‐by‐layer assembly method. Cationic and anionic polyelectrolytes are used as an electrostatic adhesive to assemble the following functional materials: plasmonic Ag nanoparticles for improved light harvesting, upconversion nanoparticles for utilization of near‐infrared light, and polyoxometalate water oxidation catalysts for enhanced catalytic activity. Polyelectrolytes also have an additional function of passivating the surface recombination centers of the underlying photoelectrode. These functional components are precisely assembled on a model photoanode (e.g., Fe2O3 and BiVO4) in a desired order and various combinations without degradation of their intrinsic properties. As a result, the performance of water oxidation photoanodes is synergistically enhanced. This study can enable the design and fabrication of novel solar‐to‐chemical energy conversion devices.  相似文献   

20.
High-efficiency, ultralightweight, mechanically stacked 4-cm2 thin-film tandem solar cells are discussed. The tandem stack consists of a single-crystal, thin-film Ga(Al)As cell fabricated by the cleavage of lateral epitaxy for transfer (CLEFT) process and adhesively bonded to the top of a CdZnS/CuInSe2 polycrystalline thin-film cell deposited on glass. Maximum tandem efficiency in a four-terminal configuration of 21.6% AM0 have been demonstrated. This represents the highest thin-film cell efficiency reported to date. Individual subcells with efficiencies of 19.5% for CLEFT GaAs and 3.0% for CuInSe2 have also been achieved. Cell specific power as high as 600 W/kg has been achieved with a 4-cm2 cell weight of 188 mg without coverglass, at an efficiency of 20.8% AM0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号