首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the power allocation problem in decode‐and‐forward cognitive dual‐hop systems over Rayleigh fading channels. In order to optimize the performance of the secondary network in terms of power consumption, an outage‐constrained power allocation scheme is proposed. The secondary nodes adjust their transmit power subject to an average interference constraint at the primary receiver and an outage probability constraint for the secondary receivers while having only statistical channel knowledge with respect to the primary nodes. We compare this approach with a power allocation scheme based on instantaneous channel state information under a peak interference constraint. Analytical and numerical results show that the proposed approach, without requiring the constant interchange of channel state information, can achieve a similar performance in terms of outage probability as that of power allocation based on instantaneous channel knowledge. Moreover, the transmit power allocated by the proposed approach is considerably smaller than the power allocated by the method based on instantaneous channel knowledge in more than 50% of the time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we analyze the performance of cognitive amplify‐and‐forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi‐antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information‐assisted AF mode, and the signals undergo independent Nakagami‐m fading. In particular, closed‐form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami‐m fading are presented. More importantly, asymptotic closed‐form expressions for the outage probability and SER are derived. These tractable closed‐form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Recently, cooperative relaying techniques have been integrated into spectrum‐sharing systems in an effort to yield higher spectral efficiency. Many investigations on such systems have assumed that the channel state information between the secondary transmitter and primary receiver used to calculate the maximum allowable transmit secondary user transmit power to limit the interference is known to be perfect. However, because of feedback delay from the primary receiver or the time‐varying properties of the channel, the channel information may be outdated, which is an important scenario to cognitive radio systems. In this paper, we investigate the impact of outdated channel state information for relay selection on the performance of partial relay selection with amplify and forward in underlay spectrum‐sharing systems. We begin by deriving a closed‐form expression for the outage probability of the secondary network in a Rayleigh fading channel along with peak received interference power constraint and maximum allowable secondary user transmit power. We also provide a closed‐form expression for the average bit‐error rate of the underlying system. Moreover, we present asymptotic expressions for both the outage probability and average bit‐error rate in the high signal‐to‐noise ratio regime that reveal practical insights on the achievable diversity gain. Finally, we confirm our results through comparisons with computer simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Cognitive radio is able to share the spectrum with primary licensed user, which greatly improves the spectrum efficiency. We study the optimal power allocation for cognitive radio to maximize its ergodic capacity under interference outage constraint. An optimal power allocation scheme for the secondary user with complete channel state information is proposed and its approximation is presented in closed form in Rayleigh fading channels. When the complete channel state information is not available, a more practical transmitter-side joint access ratio and transmit power constraint is proposed. The new constraint guarantees the same impact on interference outage probability at primary user receiver. Both the optimal power allocation and transmit rate under the new constraint are presented in closed form. Simulation results evaluate the performance of proposed power allocation schemes and verify our analysis.  相似文献   

5.
In this paper, we analyze the tradeoff between outage probability (OP) and intercept probability (IP) for a multi‐hop relaying scheme in cognitive radio (CR) networks. In the proposed protocol, a multi‐antenna primary transmitter (PT) communicates with a multi‐antenna primary receiver (PR), using transmit antenna selection (TAS) / selection combining (SC) technique, while a secondary source attempts to transmit its data to a secondary destination via a multi‐hop approach in presence of a secondary eavesdropper. The secondary transmitters such as source and relays have to adjust their transmit power to satisfy total interference constraint given by PR. We consider an asymmetric fading channel model, where the secondary channels are Rician fading, while the remaining ones experience the Rayleigh fading. Moreover, an optimal interference allocation method is proposed to minimize OP of the primary network. For the secondary network, we derive exact expressions of end‐to‐end OP and IP which are verified by Monte Carlo simulations.  相似文献   

6.
This paper considers a cognitive radio network where a secondary user (SU) coexists with a primary user (PU). The interference outage constraint is applied to protect the primary transmission. The power allocation problem to jointly maximize the ergodic capacity and minimize the outage probability of the SU, subject to the average transmit power constraint and the interference outage constraint, is studied. Suppose that the perfect knowledge of the instantaneous channel state information (CSI) of the interference link between the SU transmitter and the PU receiver is available at the SU, the optimal power allocation strategy is then proposed. Additionally, to manage more practical situations, we further assume only the interference link channel distribution is known and derive the corresponding optimal power allocation strategy. Extensive simulation results are given to verify the effectiveness of the proposed strategies. It is shown that the proposed strategies achieve high ergodic capacity and low outage probability simultaneously, whereas optimizing the ergodic capacity (or outage probability) only leads to much higher outage probability (or lower ergodic capacity). It is also shown that the SU performance is not degraded due to partial knowledge of the interference link CSI if tight transmit power constraint is applied.  相似文献   

7.
岳文静  武聪  陈志  孟庆民  郑宝玉 《信号处理》2014,30(11):1298-1302
本文构建了一种在感知结果下具有多天线次用户的频谱共享模型,该模型由单入单出主用户对和多入单出认知用户对构成。当认知用户感知到主用户占用信道时,主用户向认知用户发送Message信息,使得认知用户发射端能够得知主用户对干扰总功率的限制要求,通过自适应地调整认知用户发射机的发射功率,以保证其对主用户不造成有害干扰;如果主用户未占用信道,认知用户立刻以最大发射功率占用信道。并分别在主用户存在和不存在两种情况下,优化认知用户发射机各天线的发射功率来最大化系统总的数据传输率。最后,通过数值仿真来验证推导出的功率分配策略,并对其进行分析和讨论。仿真结果表明:相比于机会频谱接入(Opportunistic Spectrum Access, OSA)和基于感知的频谱共享(Sensing-based spectrum sensing)模式,推导的功率分配策略在提出的模型中可以获得更高的信息传输率。   相似文献   

8.
In this paper, we study power allocation in OFDM cognitive radio (CR) relay networks. The objective of power allocation is to maximize the instantaneous capacity of the CR network. It is assumed that the available channel state information between the secondary and primary users is an outdated but correlated version of the actual instantaneous channel state information. Optimal power allocation schemes are developed for both decode‐and‐forward and amplify‐and‐forward relay assisted CR transmission, assuming that the primary users are subject to average interference constraints and the CR transmitters are subject to maximum transmit power constraint. In addition, suboptimal power allocation schemes with reduced complexity are also proposed. Performance of the proposed schemes is compared with uniform power allocation and numerical results confirm that the proposed power allocation schemes achieve significant capacity improvement in comparison to uniform power loading. Furthermore, the proposed suboptimal power allocation schemes can be used as less complex alternatives for optimal power allocation with some capacity degradation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Resource allocation under spectrum sensing based dynamic spectrum sharing strategy is a critically important issue for cognitive radio networks (CRNs), because they need to not only satisfy the interference constraint caused to the primary users (PUs), but also meet the quality-of-service (QoS) requirements for the secondary users (SUs). In this paper, we develop the optimal spectrum sensing based resource allocation scheme for the delay QoS constrained CRNs. Specifically, we aim at maximizing the maximum constant arrival rate of the SU that can be supported by the time-varying service process subject to the given statistical delay QoS constraint. In our derived power allocation scheme, not only the average transmit and interference power constraints are considered, but also the impact of the PUs?? transmission to the CRNs and the PUs?? spectrum-occupancy probability are taken into consideration. Moreover, the spectrum sensing errors are also taken into consideration. Simulation results show that, (1) the effective capacity of the secondary link decreases when the statistical delay QoS constraint becomes stringent; (2) given the QoS constraint, the effective capacity of the secondary link varies with the interference power constraint and the SNR of the primary link.  相似文献   

10.
This paper evaluates the performance of an underlay cognitive relay network under imperfect channel state information (CSI) where a secondary user (SU) transmits using a secondary relay (SR) based on decode and forward scheme. The outage probability (OP) of SU is investigated in a scenario where the decode and forward relay harvests energy from radio frequency signal of SU. The relay uses a fraction of time for harvesting in time switching–based relaying (TSR) while a fraction of received power is used for harvesting in power splitting–based relaying (PSR) scheme. The SU and relay control their transmit power using a scaling factor, based on CSI of the interfering links (ie, links from SU transmitter and SR to the primary user [PU] receiver) to protect the quality of service of PU. The available CSI at the SU and SR are imperfect due to practical limitation. Analytical expressions of the OP are derived for TSR‐ and PSR‐based schemes. The impact of harvesting time, power splitting ratio, imperfect CSI, PU outage constraint and interference threshold on the OP of the SU network, and average transmit power of SR is indicated. Further, the impact of multiple SRs is also shown.  相似文献   

11.
This paper considers cooperative non‐orthogonal multiple access (NOMA) scheme in an underlay cognitive radio (CR) network. A single‐cell downlink cooperative NOMA system has been considered for the secondary network, consisting of a base station (BS) and two secondary users, ie, a far user and a near user. The BS employs NOMA signaling to send messages for the two secondary users where the near user is enabled to act as a half‐duplex decode‐and‐forward (DF) relay for the far user. We derive exact expressions for the outage probability experienced by both the users and the outage probability of the secondary system assuming the links to experience independent, nonidentically distributed Rayleigh fading. Further, we analyze the ergodic rates of both the users and the ergodic sum rate of the secondary network. The maximum transmit power constraint of the secondary nodes and the tolerable interference power constraint at the primary receiver are considered for the analysis. Further, the interference caused by the primary transmitter (PT) on the secondary network is also considered for the analysis. The performance of the proposed CR NOMA network has been observed to be significantly better than a CR network that uses conventional orthogonal multiple access (OMA) scheme. The analytical results are validated by extensive simulation studies.  相似文献   

12.
Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.  相似文献   

13.
The two main constraints on the transmit power allocation of the secondary service in a spectrum sharing scheme are the received interference threshold at the primary receiver, and the maximum transmit power of the secondary user. We obtain a critical system parameter which relates these two constraints and enables the system designer to eliminate the interference threshold constraint by adjusting the maximum transmit power of the secondary users. Eliminating the interference threshold constraint significantly reduces the system complexity by making the power allocation of the secondary service independent from the channel state information between the secondary transmitter and the primary receiver; thus removes the need for signaling between primary and secondary systems.  相似文献   

14.
This paper considers an underlay cognitive radio network with a full‐duplex cognitive base station and sets of half‐duplex downlink and uplink secondary users, sharing multiple channels with the primary user. The resource allocation problem to maximize the sum rate of all the secondary users is investigated subject to the transmit power constraints and the interference power constraint. The optimization problem is highly nonconvex, and we jointly use the dual optimization method and the successive convex approximation method to derive resource allocation algorithms to solve the problem. Extensive simulations are shown to verify the performance of the resource allocation algorithms. It is shown that the proposed algorithms achieve much higher sum rate than that of the optimal half‐duplex algorithms and the reference full‐duplex algorithms.  相似文献   

15.
Although there have been many interesting works on outage performance analysis of cognitive AF relay networks, we have not found works taking into consideration all the following issues: multiple primary users (PUs), the existence of the direct link from secondary user (SU) source to SU destination, non‐identical, independent Rayleigh‐fading channels, non‐identical interference power limits of PUs, and non‐identical noise powers in signals. Additionally, in outage performance analysis for such networks, the correlation issue, which results from the channel gain of interference links from the SU nodes to the PU, requires elaborate treatments. Hence, analyzing outage performance of non‐identical‐parameter networks (where all channels are fully non‐identical Rayleigh‐fading channels, the PUs have different interference power limits, and received signals have different noise powers) from the beginning is highly complicated. To overcome this problem, we conduct the analysis in two steps. In the first step, expressions of both exact and asymptotic outage probability of identical‐parameter cognitive AF relay networks (where all channels are fully non‐identical Rayleigh‐fading channels but all other parameters are identical) are obtained. Then in the second step, we propose a method for transforming a network with all non‐identical parameters into a new identical‐parameter network, meanwhile guaranteeing that outage performance of the two networks before and after the transformation are the same. Hence, OP of the original non‐identical‐parameter network can be obtained indirectly by using the analysis results obtained in the first step. Our analysis results are validated through numerical simulations. The effects of the number of PUs and the diversity level of channel parameters (which means the range of the channel parameter values) are also inspected by simulations. The results show that taking these factors into consideration is of key importance in obtaining a more accurate estimation of outage performance of such networks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Opportunistic beamforming using dumb antennas   总被引:47,自引:0,他引:47  
Multiuser diversity is a form of diversity inherent in a wireless network, provided by independent time-varying channels across the different users. The diversity benefit is exploited by tracking the channel fluctuations of the users and scheduling transmissions to users when their instantaneous channel quality is near the peak. The diversity gain increases with the dynamic range of the fluctuations and is thus limited in environments with little scattering and/or slow fading. In such environments, we propose the use of multiple transmit antennas to induce large and fast channel fluctuations so that multiuser diversity can still be exploited. The scheme can be interpreted as opportunistic beamforming and we show that true beamforming gains can be achieved when there are sufficient users, even though very limited channel feedback is needed. Furthermore, in a cellular system, the scheme plays an additional role of opportunistic nulling of the interference created on users of adjacent cells. We discuss the design implications of implementing. this scheme in a complete wireless system  相似文献   

17.
In this paper we have studied the subcarrier and optimal power allocation strategy for OFDM-based cognitive radio (CR) networks. Firstly, in order to protect the primary user communication from the interference of the cognitive user transmissions in fading wireless channels, we design an opportunistic power control scheme to maximize the cognitive user capacity without degrading primary user’s QoS. The mathematical optimization problem is formulated as maximizing the capacity of the secondary users under the interference constraint at the primary receiver and the Lagrange method is applied to obtain the optimal solution. Secondly, in order to limit the outage probability within primary user’s tolerable range we analyze the outage probability of the primary user with respect to the interference power of the secondary user for imperfect CSI. Finally, in order to get the better tradeoff between fairness and system capacity in cognitive radio networks, we proposed an optimal algorithm of jointing subcarrier and power allocation scheme among multiple secondary users in OFDM-based cognitive radio networks. Simulation results demonstrate that our scheme can improve the capacity performance and efficiently guarantee the fairness of secondary users.  相似文献   

18.
Efficient radio spectrum utilization can be improved using cognitive radio technology. In this work, we consider a spectrum underlay cognitive radio system operating in a fading environment. We propose an efficient power control scheme that maximizes the effective capacity of the secondary user, provisioning quality of service while on the same time the communication of the primary user is guaranteed through interference constraints. The specific power allocation scheme uses a policy in which the outage events of the primary user are exploited leading to a significant increase of the secondary user’s effective capacity. Moreover, the interference of the primary link to the secondary is taken into account so as to study a more realistic scenario. In order to safeguard primary user’s communication, two types of restrictions are considered: the traditional interference power constraint and the proposed inverse signal to interference plus noise ratio constraint. Different scenarios depending on the nature of the constraints (peak/average) are studied and their impact on the performance of the primary and secondary users is investigated. The superiority of the proposed schemes is demonstrated through their comparison with two reference power control schemes. Finally, numerical calculations, validated with simulation results, confirm the theoretical analysis and evaluate the performance of the proposed scheme for all the different scenarios.  相似文献   

19.
In this paper, we investigate the physical layer security of a hybrid cognitive relay network using an energy harvesting relay in presence of an eavesdropper. In the hybrid scheme, a secondary user (SU) as well as a cognitive relay works either in underlay or in overlay mode. In underlay, the transmit power of the SU as well as the relay is limited by the maximum acceptable interference at primary user (PU) receiver as required by an outage constraint of PU, a quality of service for PU. The secondary network consists of a decode and forward relay that harvests energy from radio frequency signal of secondary transmitter as well as PU transmitter to assist the SU in forwarding the information signal to the destination. A time switching relaying protocol is used at the relay. We evaluate the secrecy outage probability of secondary relay network assuming that channel state information of the interfering links from both the SU and relay transmitter to PU receiver is imperfect. Our results reveal the impact of imperfect channel state information, energy harvesting time, tolerable interference threshold, and PU outage constraint on the secrecy outage probability of SU.  相似文献   

20.
Upper bound on the capacity of cognitive radio without cooperation   总被引:1,自引:0,他引:1  
We derive an upper bound on the capacity of cognitive radio using the interference temperature concept. We do not assume any cooperation between the primary and the secondary user. First, assuming all four links associated with the primary/secondary transmitter/receiver experience Rayleigh fading, the capacity is achieved via the water-filling power allocation strategy, subject to an average secondary to primary interference to signal ratio (ISR) constraint and a peak ISR constraint. Second, we extend our result to the case with path loss as well as channel fading to reflect the geometric relations between link pairs and network size. Finally, we numerically show that for KP primary receivers which are opportunistically scheduled, the capacity of cognitive radio asymptotically grows as logloglogKP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号