首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
With the adoption of long‐term evolution standard for 4G mobile communications, the deployment of femtocell base stations (FBSs) to cope with the surging traffic in mobile wireless communication is becoming increasingly popular. However, with the random installation of FBSs, the problem of interference among FBSs is still a challenge. In this paper, assuming the presence of a femtocell management system that can control and coordinate the densely deployed FBSs, a novel power backoff scheme is proposed that determines the appropriate transmit power of each FBS so that the interference is reduced. Simulation results for randomly deployed FBSs in an environment with shadowing using MATLAB are provided, showing that our proposed methods can effectively mitigate the co‐tier downlink interference while improving the system capacity in a densely deployed femtocell network with shared spectrum use. Quantitatively, the average interference is reduced by roughly 90% to 100% of dBm, and the average capacity is increased by more than 80%. These results attest to the effectiveness of the proposed scheme.  相似文献   

2.
The traditional cellular network cannot keep pace with the dramatic growth in data traffic due to exponentially increasing number of multimedia applications and mobile subscribers. Recently, femto base stations (FBSs) are deployed with the macro base station (MBS) tier for off‐loading the data traffic and to improve the indoor coverage of the heterogeneous cellular network. However, FBS deployment also increases the cross‐tier interference of the heterogeneous cellular network resulting in outage performance degradation of MBS tier. This work develops an analytical framework to limit the cross‐tier interference of MBS tier using power control scheme (PCS). The proposed PCS works on path loss inversion and location‐based power level rule for FBS. Moreover, a cooperation scheme and an association policy with MBS (CSAPM) are introduced to improve the outage performance of the FBS tier. Tools from the stochastic geometry are used for deriving the signal to interference and noise ratio outage probability, total outage probability, and area spectral efficiency (ASE) of MBS tier and FBS tier. Additionally, ASE maximization problem is formulated to evaluate the optimal density of FBSs. The effectiveness of the proposed PCS and CSAPM on outage performance and ASE are numerically demonstrated. It is noted from the results that the proposed CSAPM can compensate the loss in outage performance of FBS tier due to PCS. Finally, simulation results validate the analytical results.  相似文献   

3.
Two‐tier heterogeneous networks (HetNets), formed by deploying small cell base stations (SBSs) over existing macrocells, can enhance the network performance in future fifth generation network. However, the cross‐/co‐tier interference in HetNets also will severely influence the user throughput of both tiers. In this paper, we investigate the resource allocation and interference mitigation problem in cluster based orthogonal frequency division multiple access (OFDMA) two‐tier HetNets. In a typical cluster, one SBS is selected as the cluster head to allocate resources among all small cells to guarantee their throughput requirements. Hybrid access policy enables small cells to suppress the cross‐tier interference and earn additional revenue from macrocells, but it also leads to decrease of available resources for small cell users (SUs). To compensate hybrid access SBSs for their resources loss, we impose hierarchical SU throughput constraints on the optimization problem, which guarantee these small cells more resources than closed access ones. Besides, the cross‐tier interference constraint is also considered to protect the transmissions of macrocell users. Accordingly, a subgradient iteration based resource allocation algorithm is proposed. Numerical results show that the proposed algorithm can satisfy SU throughput constraints of all small cells with different access policies and guarantee quality of service requirements of all accessed macrocell users in hybrid access small cells.  相似文献   

4.
The coexistence of a macrocell and a number of femtocells often leads to a two‐tier heterogeneous network, where the co‐tier interference (CotIN) and cross‐tier interference (CrotIN) both degrade users' quality of service. In order to suppress these interferences, we propose a precoding scheme in a heterogeneous network with cooperative femtocells, called CotIN elimination and CrotIN suppression with precoding criterion selection (ESPS) scheme. In this scheme, we first eliminate the CotINs of each user by applying the QR decomposition to channel matrix. Then the CrotINs of macrocell users and femtocell users are suppressed via the macrocell base station (MBS) and femtocell access points (FAPs) with precoding criterion selection, respectively. By using the ESPS scheme, spatial resources can be efficiently exploited. In addition, our ESPS scheme requires little information exchange between MBS and FAPs without iteration and thus significantly reduces the implementation complexity. Furthermore, the robustness is increased through introducing the information of channel uncertainty into the ESPS when channel estimation or quantization error exists. The performance analysis for the ESPS demonstrates that the ESPS is practical in the heterogeneous networks. Finally, simulation results show that the ESPS can decrease users' bit error rates and increase their transmission rates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Two‐tier heterogeneous networks, where the current cellular networks, that is, macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant benefits to spectral utilization and system capacity. In a two‐tier network, the cross‐tier interference needs to be handled properly. Unlike the downlink interference, the uplink (UL) interference at femtocell caused by macrocell user equipment (MUE) has not been addressed sufficiently. When an MUE is located near the coverage of femtocell, its transmit power may cause UL interference to the femtocell receiver, especially for the closed subscriber group femtocells that share the entire frequency spectrum with macrocell. We propose a novel quasi‐access strategy, which allows the interfering MUE to connect with the interfered femtocell access point (FAP) while only via UL. It can significantly alleviate the UL interference at the FAP as well as its neighbors, in the meantime, benefit the macro‐tier. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We consider a multi‐source two‐way relay network, in which one source communicates with N other sources (n = 1,2,…,N) with the help of a single amplify‐and‐forward relay. We propose two opportunistic source scheduling schemes in such a network. According to the proposed schemes, in each transmission interval, only a single out of the N sources is selected, and this selected node acts as either transmitter or receiver depending on the channel conditions. For both schemes, tight closed‐form lower bounds of outage probability and bit error rate (BER) are derived. Asymptotic outage probability and BER that are valid for high signal‐to‐noise ratio regime are also analyzed, which can provide important insights on the impact of system parameters. The analytical results show that the full diversity order N + 1 can be achieved by both proposed schemes. Simulation results are also presented to corroborate the analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we study the resource allocation problem of the uplink transmission with delay quality‐of‐service constraints in two‐tier femtocell networks. Particularly, to provide statistical delay guarantees, the effective capacity is employed as the network performance measure instead of the conventional Shannon capacity. To make the problem computationally efficient and numerically tractable, we decompose the problem into three subproblems, namely, cluster configuration subproblem, intra‐cluster subchannel allocation subproblem and inter‐cluster power control subproblem. Firstly, we develop a low‐complexity heuristic semi‐dynamic clustering scheme, where the delay of the channel state information feedback via backhaul is considered. We model such system in the framework of networked partial observation Markov decision process and derive a strategy to reduce the search range for the best cluster configuration. Then, for a given cluster configuration, the cluster heads deal with subchannel allocation and power control within each cluster. We propose a subchannel allocation scheme with proportional fairness. Thereafter, the inter‐cluster power control subproblem is modeled as a set of exact potential games, and a channel quality related pricing mechanism is presented to mitigate inter‐cluster interference. The existence and uniqueness of Nash equilibriums for the proposed game are investigated, and an effective decentralized algorithm with guaranteed convergence is designed. Simulation results demonstrate that the proposed algorithms not only have much lower computational complexity but also perform close to the exhaustive search solutions and other existing schemes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we address the problem of distributed interference management of femtocells that share the same frequency band with macrocells using distributed multi‐agent Q‐learning. We formulate and solve two problems representing two different Q‐learning algorithms, namely, femto‐based distributed and sub‐carrier‐based distributed power controls using Q‐learning (FBDPC‐Q and SBDPC‐Q). FBDPC‐Q is a multi‐agent algorithm that works on a global basis, for example, deals with the aggregate macrocell and femtocell capacities. Its complexity increases exponentially with the number of sub‐carriers in the system. Also, it does not take into consideration the sub‐carrier macrocell capacity as a constraint. To overcome these problems, SBDPC‐Q is proposed, which is a multi‐agent algorithm that works on a sub‐carrier basis, for example, sub‐carrier macrocell and femtocell capacities. Each of FBDPC‐Q and SBDPC‐Q works in three different learning paradigms: independent (IL), cooperative (CL), and weighted cooperative (WCL). IL is considered the simplest form for applying Q‐learning in multi‐agent scenarios, where all the femtocells learn independently. CL and WCL are the proposed schemes in which femtocells share partial information during the learning process in order to strike a balance between practical relevance and performance. We prove the convergence of the CL paradigm when used in the FBDPC‐Q algorithm. We show via simulations that the CL paradigm outperforms the IL paradigm in terms of the aggregate femtocell capacity, especially in networks with large number of femtocells and large number of power levels. In addition, we propose WCL to address the CL limitations. Finally, we evaluate the robustness and scalability of both FBDPC‐Q and SBDPC‐Q, against several typical dynamics of plausible wireless scenarios (fading, path loss, random activity of femtocells, etc.). We show that the CL paradigm is the most scalable to large number of femtocells and robust to the network dynamics compared with the IL and WCL paradigms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Femtocell is regarded as a promising technology to enhance indoor coverage and improve network capacity. However, highly dense and self‐organized femtocells in urban environment will result in serious inter‐femtocell interference. To solve this problem, this paper proposes a distributed power self‐optimization scheme for the downlink operation of dense femtocell networks. First, a novel convex pricing mechanism is presented to price the transmit power of femtocells and construct the utility function of femtocells. Then, a noncooperative game framework for power self‐optimization of femtocells in dense femtocell networks is established on the basis of the exact potential game theory, which is demonstrated to converge to a pure and unique Nash equilibrium. Finally, combined with firefly algorithm, an effective power self‐optimization algorithm with guaranteed convergence is proposed to achieve the Nash equilibrium of the proposed game. With practical LTE parameters and a 3GPP dual‐strip femtocell model, simulation results show that the proposed game with convex pricing mechanism increases the femtocell network throughput by 7% and reduces the average transmit power of femtocells by 50% in dense femtocell networks, with respect to the compared schemes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
As a part of enhanced inter‐cell interference coordination (eICIC), almost blank subframe (ABS) is an efficient technique to mitigate the cross‐tier interference of two‐tier heterogeneous networks (HetNets) and enhance overall network performance. However, in small cells with closed subscriber group (CSG) mode, how to motivate small cell base stations (SBSs) to adopt ABS schemes is still one of technical challenges due to the selfish nature of SBSs. In this paper, we propose a pricing framework with ABS scheme that benefit both the macrocell and small cell tier. Within the proposed framework, each SBS with closed access policy performs ABS scheme by muting a portion of the whole frame in time domain, and then dedicating this interference‐free subframe to macrocell users (MUs) for exclusive use. In return, the macrocell base station (MBS) announces the price for these ABSs and offers a certain amount of revenue to each SBS according to the length of its ABS. Furthermore, we extend the small cell performance analysis to the scenario of hybrid access policy, which allow neighboring MUs to access small cells. To investigate the interaction between two tiers, we formulate the proposed framework as a one‐leader multiple‐follower Stackelberg game, which regards the MBS and SBSs as leader and followers, respectively. On the basis of the theoretical analysis, we prove that a unique Stackelberg equilibrium (SE) exists and obtain the optimal strategies for both tiers. Numerical results evaluate the utility performance of both tiers when SE is achieved and verify the validity of the proposed framework.  相似文献   

11.
Energy efficiency is one of the top priorities for future cellular networks, which could be accomplished by implementing cooperative mechanisms. In this paper, we propose three evolved node B (eNB)‐centric energy‐saving cooperation techniques for long‐term evolution (LTE) systems. These techniques, named as intra‐network, inter‐network, and joint cooperation, involve traffic‐aware intelligent cooperation among eNBs belonging to the same or different networks. Our proposed techniques dynamically reconfigure LTE access networks in real time utilizing less number of active eNBs and thus, achieve energy savings. In addition, these techniques are distributed and self‐organizing in nature. Analytical models for evaluating switching dynamics of eNBs under these cooperation mechanisms are also formulated. We thoroughly investigate the proposed system under different numbers of cooperating networks, traffic scenarios, eNB power profiles, and their switching thresholds. Optimal energy savings while maintaining quality of service is also evaluated. Results indicate a significant reduction in network energy consumption. System performance in terms of network capacity utilization, switching statistics, additional transmit power, and eNB sleeping patterns is also investigated. Finally, a comprehensive comparison with other works is provided for further validation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In two‐tier networks, which consist of macrocells and femtocells, femtocells can offload the traffic from macrocells thereby improving indoor signal coverage. However, the dynamic deployment feature of femtocells may result in signal interference due to limited frequency spectrum. The tradeoff between broad signal coverage and increased signal interference deserves further exploration for practical network operation. In this paper, dynamic frequency resource management is proposed to avoid both co‐tier and cross‐tier Orthogonal Frequency Division Multiple Access downlink interference and increase frequency channel utilization under co‐channel deployment. A graph‐based non‐conflict group discovery algorithm is proposed to discover the disjoint interference‐free groups among femtocells in order to avoid the co‐tier interference. A macrocell uses the femtocell gateway for frequency resource allocation among femtocells to avoid cross‐tier interference. We formulate the optimized frequency resource assignment as a fractional knapsack problem and solve the problem by using a greedy method. The simulation results show that the average data transfer rate can be increased from 21% to 60%, whereas idle rate and blocking rate are decreased in the range of and , respectively, as compared with conventional graph coloring and graph‐based dynamic frequency reuse schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we propose a cognitive transmission scheme for Amplify‐and‐Forward (AF) two‐way relay networks (TWRNs) and investigate its joint sensing and transmission performance. Specifically, we derive the overall false alarm probability, the overall detection probability, the outage probability of the cognitive TWRN over Rayleigh fading channels. Furthermore, based on these probabilities, the spectrum hole utilization efficiency of the cognitive TWRN is defined and evaluated. It is shown that smaller individual or overall false alarm probability can result in less outage probability and thus larger spectrum hole utilization efficiency for cognitive TWRN, and however produce more interference to the primary users. Interestingly, it is found that given data rate, more transmission power for the cognitive TWRN does not necessarily obtain higher spectrum hole utilization efficiency. Moreover, our results show that a maximum spectrum hole utilization efficiency can be achieved through an optimal allocation of the time slots between the spectrum sensing and data transmission phases. Finally, simulation results are provided to corroborate our proposed studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Although there have been many interesting works on outage performance analysis of cognitive AF relay networks, we have not found works taking into consideration all the following issues: multiple primary users (PUs), the existence of the direct link from secondary user (SU) source to SU destination, non‐identical, independent Rayleigh‐fading channels, non‐identical interference power limits of PUs, and non‐identical noise powers in signals. Additionally, in outage performance analysis for such networks, the correlation issue, which results from the channel gain of interference links from the SU nodes to the PU, requires elaborate treatments. Hence, analyzing outage performance of non‐identical‐parameter networks (where all channels are fully non‐identical Rayleigh‐fading channels, the PUs have different interference power limits, and received signals have different noise powers) from the beginning is highly complicated. To overcome this problem, we conduct the analysis in two steps. In the first step, expressions of both exact and asymptotic outage probability of identical‐parameter cognitive AF relay networks (where all channels are fully non‐identical Rayleigh‐fading channels but all other parameters are identical) are obtained. Then in the second step, we propose a method for transforming a network with all non‐identical parameters into a new identical‐parameter network, meanwhile guaranteeing that outage performance of the two networks before and after the transformation are the same. Hence, OP of the original non‐identical‐parameter network can be obtained indirectly by using the analysis results obtained in the first step. Our analysis results are validated through numerical simulations. The effects of the number of PUs and the diversity level of channel parameters (which means the range of the channel parameter values) are also inspected by simulations. The results show that taking these factors into consideration is of key importance in obtaining a more accurate estimation of outage performance of such networks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
This paper considers the cognitive radio network with one primary user (PU), one secondary user (SU), and multiple decode‐and‐forward relays. We propose a relaying scheme to ensure the priority of primary transmission, where the relays are used to forward PU's message and sometimes also SU's message. First, SU is allowed to use the spectrum to transmit only when its transmission would not affect the decoding status of PU's message at all relays. Second, once the secondary transmission happens, the relays that successively decode SU's message are allowed to retransmit this message when it would not affect the decoding status of PU's message at primary receiver. The interference from PU to SU and the interference from SU to PU are both considered. By analyzing the decoding status of primary message and secondary message at different relays, we formulate the outage probabilities of both primary transmission and secondary transmission. When all channels follow Rayleigh distributions, we derive the analytical expressions for the general case of any number of relays, which are validated by means of Monte Carlo simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Short range, low power, plug‐and‐play femtocell has carved a niche for itself because of its potential for higher rate indoor voice and data service, coverage enhancement over cell edges, high network capacity, and negligible greenhouse gas emission. The frequency reuse phenomenon in two‐tier cellular network subjects the cell‐edge macrouser to severe downlink interference from co‐channel deployed femtocells in the same province. Downlink power control approach is a recommended remedy to overcome such type of interferences. This paper proposes release‐11‐based maximum downlink power control (R‐11‐based MDPC) approach to protect macrouser's service from co‐channel interference. The feedback strategy incorporated in this paper is formulated by R‐11 of 3rd Generation Partnership Program for Long Term Evolution standard. Implementation of new R‐11‐based feedback strategy between femto‐base station and macro‐base station with MDPC approach ensures instantaneous power control with minimal feedback delay, higher signal‐to‐interference‐plus‐noise ratio (SINR), simple receiver module design, and better service availability. Simulation results of R‐11‐based MDPC approach clearly indicate reduced feedback delay, better power control with minimal interference, improved SINR, and negligible outage probability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The two‐way relay (TWR) protocols are efficient in providing appreciable throughput gains in wireless networks through the use of network coding to combine packets from multiple channels. The key determinant factor in driving the throughput improvement is the degree of simultaneity achieved in the relay scheme. In this paper, we propose a new TWR protocol named interference cancellation TWR (IC‐TWR), which combines network coding, spatial diversity, and IC techniques to arrive at high degree of simultaneity and in the meanwhile to relax the requirement on channel state information as compared with TWR schemes based on amplify‐and‐forward. Numerical analysis shows that the proposed IC‐TWR is uniformly advantageous over the traditional decode‐and‐forward scheme in terms of system throughput and end‐to‐end delay. The proposed scheme may be useful for system designers of high‐speed multimedia applications in wireless mobile networks, wireless cellular networks, wireless sensor networks, and so on. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Mobility load balancing (MLB) redistributes the traffic load across the networks to improve the spectrum utilisation. This paper proposes a self‐organising cluster‐based cooperative load balancing scheme to overcome the problems faced by MLB. The proposed scheme is composed of a cell clustering stage and a cooperative traffic shifting stage. In the cell clustering stage, a user‐vote model is proposed to address the virtual partner problem. In the cooperative traffic shifting stage, both inter‐cluster and intra‐cluster cooperations are developed. A relative load response model is designed as the inter‐cluster cooperation mechanism to mitigate the aggravating load problem. Within each cluster, a traffic offloading optimisation algorithm is designed to reduce the hot‐spot cell's load and also to minimise its partners’ average call blocking probability. Simulation results show that the user‐vote‐assisted clustering algorithm can select two suitable partners to effectively reduce call blocking probability and decrease the number of handover offset adjustments. The relative load response model can address public partner being heavily loaded through cooperation between clusters. The effectiveness of the traffic offloading optimisation algorithm is both mathematically proven and validated by simulation. Results show that the performance of the proposed cluster‐based cooperative load balancing scheme outperforms the conventional MLB. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Cognitive femtocell has been considered as a promising technique that can improve the capacity and the utilization of spectrum efficiency in wireless networks because of the short transmission distance and low transmit power. In this paper, we study the win–win solution of energy‐efficient radio resource management in cognitive femtocell networks, where the macrocell tries to maximize its revenue by adjusting spectrum utilization price while the femtocells try to maximize their revenues by dynamically adjusting the transmit power. When the spectrum utilization price is given by macrocell, we formulate the power control problem of standalone femtocells as an optimization problem and introduce a low‐complexity iteration algorithm based on gradient‐assisted binary search algorithm to solve it. Besides, non‐cooperative game is used to formulate the power control problem between collocated femtocells in a collocated femtocell set, and then low complexity and widely used gradient‐based iteration algorithm is applied to obtain the Nash‐equilibrium solution. Specially, asymptotic analysis is applied to find the approximate spectrum utilization price in macrocell, which can greatly reduce the computational complexity of the proposed energy‐efficient radio resource management scheme. Finally, extensive simulation results are presented to verify our theoretical analysis and demonstrate the performance of the proposed scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This paper considers channel quality indicator (CQI) reporting for data exchange in a two‐way multi‐relay network. We first propose an efficient CQI reporting scheme based on network coding, where two terminals are allowed to simultaneously estimate the CQI of the distant terminal‐relay link without suffering from additional overhead. In addition, the transmission time for CQI feedback at the relays is reduced by half while the increase in complexity and the loss of performance are negligible. This results in a system throughput improvement of 16.7% with our proposed CQI reporting. Upper and lower bounds of the mean square error (MSE) of the estimated CQI are derived to study performance behaviour of our proposed scheme. It is found that the MSE of the estimated CQI increases proportionally with the square of the cardinality of CQI level sets although an increased number of CQI levels would eventually lead to a higher data rate transmission. On the basis of the derived bounds, a low‐complexity relay selection (RS) scheme is then proposed. Simulation results show that, in comparison with optimal methods, our suboptimal bound‐based RS scheme achieves satisfactory performance while reducing the complexity at least three times in case of large number of relays. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号