首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isomers of 4‐amino‐1,3‐dinitrotriazol‐5‐one‐2‐oxide (ADNTONO) are of interest in the contest of insensitive explosives and were found to have true local energy minima at the DFT‐B3LYP/aug‐cc‐pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazol‐5‐one N‐oxides were obtained in their ground state. Kamlet‐Jacob equations were used to evaluate the performance properties. The detonation properties of ADNTONO (D=10.15 to 10.46 km s−1, P=50.86 to 54.25 GPa) are higher compared with those of 1,1‐diamino‐2,2‐dinitroethylene (D=8.87 km s−1, P=32.75 GPa), 5‐nitro‐1,2,4‐triazol‐3‐one (D=8.56 km s−1, P=31.12 GPa), 1,2,4,5‐tetrazine‐3,6‐diamine‐1,4‐dioxide (D=8.78 km s−1, P=31.0 GPa), 1‐amino‐3,4,5‐trinitropyrazole (D=9.31 km s−1, P=40.13 GPa), 4,4′‐dinitro‐3,3′‐bifurazan (D=8.80 km s−1, P=35.60 GPa) and 3,4‐bis(3‐nitrofurazan‐4‐yl)furoxan (D=9.25 km s−1, P=39.54 GPa). The  NH2 group(s) appears to be particularly promising area for investigation since it may lead to two desirable consequences of higher stability (insensitivity), higher density, and thus detonation velocity and pressure.  相似文献   

2.
3.
In this study the oxygen reduction reaction (ORR) is investigated on a nanoparticulate silver electrocatalyst in alkaline solution. The catalytic activity of the catalyst is determined both in terms of mass activity as well as specific activity and turn over frequency, respectively. It is demonstrated that the established mass activities are independent of the applied catalyst loading, an essential requirement for a reasonable analysis. The determination of the electrochemically active surface area (ECA) or the number of electrochemically accessible sites (NECAS), respectively, is performed by the underpotential deposition of lead. The obtained value of the activity is compared to activities of polycrystalline silver and platinum measured in the same electrolyte, as well as to literature data.  相似文献   

4.
Molecular orbital calculations were performed for the geometric and electronic structures, band gap, thermodynamic properties, density, detonation velocity, detonation pressure, stability and sensitivity of 1,3,4,5‐tetranitropyrazole ( R23 ). The calculated density (approx. 2060 kg m−3), detonation velocity (approx. 9.242 km s−1) and detonation pressure (approx. 41.30 GPa) of the model compound are appearing to be promising compared to hexahydro‐1,3,5‐trinito‐1,3,5‐triazine (RDX) and octahydro‐1,3,5,7‐tetranitro‐l,3,5,7‐tetrazocine (HMX). Bader’s atoms‐in‐molecules (AIM) analysis was also performed to understand the nature of the intramolecular N ⋅⋅⋅ O interactions and the strength of trigger X NO2 bonds (where XC, N) of the optimized structure computed from the B3LYP/aug‐cc‐pVDZ level.  相似文献   

5.
Energetic azoles have shown great potential as powerful energetic molecules, which find various applications in both military and civilian fields. This work describes the synthesis, characterization and performance evaluation of two energetic triazole derivatives, viz. N‐(2,4‐dinitrophenyl)‐3‐nitro‐1H‐1,2,4‐triazole ( 1a ) and N‐(2,4‐dinitrophenyl)‐3‐azido‐1H‐1,2,4‐triazole ( 1b ). The compounds were synthesized from 3‐nitro‐1,2,4‐triazole and 3‐azido‐1,2,4‐triazole, by a simple synthetic route and structurally characterized using FT‐IR and NMR (1H, 13C) spectroscopy as well as elemental analysis. Thermal analyses on the molecules were performed using simultaneous TG‐DTA. Both compounds ( 1a , 1b ) showed good thermal stability with exothermic decomposition peaks at 348 °C and 217 °C, respectively, on DTA. The energetic and sensitivity properties of both compounds like friction sensitivities and heats of formation are reported. The heats of combustion at constant volume were determined using oxygen bomb calorimetry and the results were used to calculate the standard molar heats of formation (ΔfHm). The azido derivative ( 1b ) showed a higher positive heat of formation. The thermo‐chemical properties of the compounds as well as the thermal decomposition products were predicted using the REAL thermodynamic code.  相似文献   

6.
This work describes the synthesis and the thermoanalytical characterization of guanidinium‐5‐aminotetrazolate (GA). GA is a new nitrogen‐rich energetic material. It is not mentioned in the chemical literature so far. The molecular structure of the compound has been determined by IR, 1H‐, 13C‐ and 15N‐NMR spectroscopy. The thermal properties, the decomposition pathways and its volatile products were investigated by thermal analysis and are discussed.  相似文献   

7.
Blend films of poly (4‐vinylpyridine) and lignin were prepared by the casting method. Their structure and properties were studied by Fourier transform infrared (FTIR), wide‐angle X‐ray diffraction (WXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). The IR spectra of the blend films indicated that hydrogen‐bonding interaction occurred between poly (4‐vinylpyridine) and lignin. The glass transition temperature of these blends increased with the increase of lignin content, which indicated that these blends were able to form a miscible phase due to the formation of intermolecular hydrogen bonding between the hydroxyl of lignin and the pyridine ring of poly (4‐vinylpyridine). The thermostability of these blends decreased with the increase of lignin content. Initially, an appreciable increase in the measured tensile strength was achieved with a lignin content of 15%, at which the maximum value of 33.03 MPa tensile strength was reached. At a 10% lignin incorporation level, the blend film exhibited a maximum value of 9.03% strain. When the threshold in lignin content for blend films exceeded that limit of 10% lignin, the strain behavior of these blend films deteriorated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1405–1411, 2005  相似文献   

8.
A series of new alternative poly(amide–imide)s (PAIs, IIIa–j ) was synthesized by the direct polycondensation of 1,4‐bis(4‐aminophenoxy)naphthalene (1,4‐BAPON) with various aromatic diimide–diacids. These polymers were obtained in quantitative yields with inherent viscosities of 0.71–1.03 dL/g. Except for IIIa, most of the polymers were soluble in aprotic polar solvents such as NMP, DMAc, DMF, and DMSO and could be solution‐cast into transparent, flexible, and tough films. The glass transition temperatures of these PAIs were in the range of 235–280°C. Thermogravimetric analyses established that these polymers were fairly stable up to 450°C, and 10% weight loss temperatures were recorded in the range of 520–569°C under nitrogen and 506–566°C under an air atmosphere. Compared with the PAIs with the 1,4‐bis(4‐aminophenoxy)benzene structure (series IV), the solubility of series III was better than that of series IV. Series III also exhibited lower crystallinity and better processability than those of series IV. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 217–225, 2000  相似文献   

9.
Clear blends of chitosan with poly(N‐vinyl‐2‐pyrrolidone) (PVP) made from aqueous solutions appear to be miscible from visual appearance. Infrared (IR) spectra used to investigate the carbonyl—hydroxyl hydrogen bonding in the blends indicated compatibility of two polymers on a molecular level. The IR spectra were also used to determine the interaction change accessing with increasing temperature and indicated that a significant conformational change occurred. On the other hand, the blend membranes were evaluated for separation of methanol from methyl tert‐butyl ether. The influences of the membrane and the feed compositions were investigated. Methanol preferentially permeates through all the tested membranes, and the partial flux of methanol significantly increase with the poly(N‐vinyl‐2‐pyrrolidone) content increasing. The temperature dependence of pervaporation performance indicated that a significant conformational change occurred with increasing temperature. Combined with the IR results, the pervaporation properties are in agreement with characteristics of interaction between chain–chain within the blend membranes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1452–1458, 1999  相似文献   

10.
In this study, amphiphilic poly(ε‐caprolactone)–pluronic–poly(ε‐caprolactone) (PCL–pluronic–PCL, PCFC) copolymers were synthesized by ring‐opening copolymerization and then reacted with isophorone diisocyanate to form polyurethane (PU) copolymers. The molecular weight of the PU copolymers was measured by gel permeation chromatography, and the chemical structure was analyzed by 1H‐nuclear magnetic resonance and Fourier transform infrared spectra. Then, the PU copolymers were processed into fibrous scaffolds by the electrospinning technology. The morphology, surface wettability, mechanical strength, and cytotoxicity of the obtained PU fibrous mats were investigated by scanning electron microscopy, water contact angle analysis, tensile test, and MTT analysis. The results show that the molecular weights of PCFC and PU copolymers significantly affected the physicochemical properties of electrospun PU nanofibers. Moreover, their good in vitro biocompatibility showed that the as‐prepared PU nanofibers have great potential for applications in tissue engineering. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43643.  相似文献   

11.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

12.
The thermal and mechanical properties of low‐density polyethylene (LDPE), poly(ε‐caprolactone) (PCL), and their blends were evaluated. Differential scanning calorimetry showed that increasing the PCL content of the blend did not change the LDPE melting temperature, but reduced the crystallinity by up to 16.8%. This behavior was related to interactions between the PCL chains and the crystalline phase of LDPE. Tensile strength and elongation at break values for the blends were lower than those for the pure polymers, which suggested an incompatibility between the polymers. The values for Young's modulus under tensile increased when PCL was added to LDPE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3909–3914, 2004  相似文献   

13.
We present a verification study of three simulation techniques for fluid–particle flows, including an Euler–Lagrange approach (EL) inspired by Jackson's seminal work on fluidized particles, a quadrature–based moment method based on the anisotropic Gaussian closure (AG), and the traditional two‐fluid model. We perform simulations of two problems: particles in frozen homogeneous isotropic turbulence (HIT) and cluster‐induced turbulence (CIT). For verification, we evaluate various techniques for extracting statistics from EL and study the convergence properties of the three methods under grid refinement. The convergence is found to depend on the simulation method and on the problem, with CIT simulations posing fewer difficulties than HIT. Specifically, EL converges under refinement for both HIT and CIT, but statistics exhibit dependence on the postprocessing parameters. For CIT, AG produces similar results to EL. For HIT, converging both TFM and AG poses challenges. Overall, extracting converged, parameter‐independent Eulerian statistics remains a challenge for all methods. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5396–5412, 2017  相似文献   

14.
The performance of detonation and underwater explosion (UNDEX) of a six‐formula HMX‐based aluminized explosive was examined by detonation and UNDEX experiments. The detonation pressures, detonation velocities, and detonation heat of HMX‐based aluminized explosive were measured. The reliability between the experimental results and those calculated by an empirical formula and the KHT code was verfied. UNDEX experiments were carried out on the propagation of a shock wave and a bubble pulse of a 1 kg cylindrical HMX‐based aluminized explosive underwater at a depth of 4.7 m. Based on the experimental results of the shock wave, the coefficients of similarity law equation for the peak pressure and attenuation time constant of shock wave were in acceptable agreement. The bubble motion during UNDEX was simulated using MSC.DYTRAN software, and the radius time curves of bubbles were determined. The effect of the aluminum/oxygen ratio on the performance of the detonation and UNDEX for an HMX‐based aluminized explosive was discussed.  相似文献   

15.
The relationship between the molecular structure and the thermal and rheological behaviors of metallocene‐ and Ziegler–Natta (ZN)‐catalyzed ethylene copolymers and high‐density polyethylenes was studied. Of special interest in this work were the differences and similarities of the metallocene‐catalyzed (homogeneous) polymers with conventional coordination‐catalyzed (heterogeneous) polyethylenes and low‐density polyethylenes. The short‐chain branching distribution was analyzed with stepwise crystallization by differential scanning calorimetry and by dynamic mechanical analysis. The metallocene copolymers exhibited much more effective comonomer incorporation in the chain than the ZN copolymers; they also exhibited narrower lamellar thickness distributions. Homogeneous, vanadium‐catalyzed ZN copolymers displayed a very similar comonomer incorporation to metallocene copolymers at the same density level. The small amplitude rheological measurements revealed the expected trend of increasing viscosity with weight‐average molecular weight and shear‐thinning tendency with polydispersity for the heterogeneous linear low‐density polyethylene and very‐low‐density polyethylene resins. The high activation energy values (34–53 kJ/mol) and elevated elasticity found for some of our experimental metallocene polymers suggest the presence of long‐chain branching in these polymers. This was also supported by the comparison of the relationship between low shear rate viscosity and molecular weight. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1140–1156, 2002  相似文献   

16.
The viscosities of various poly(vinyl acetate) (PVAc)–solvent mixtures (PVAc–toluene, PVAc–benzene, and PVAc–cyclohexanone) were measured at different temperatures with a Haake viscometer. The required molecular weight of a commercial‐grade PVAc sample was measured with an Ubbelohde viscometer. The measured viscosities were correlated with a previously proposed viscosity model, and the model parameters were calculated. The results indicated the applicability of the model to the viscosity calculations of PVAc–solvent mixtures. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1244–1249, 2005  相似文献   

17.
The “Joint Committee for the Analysis of Fats, Oils, Fatty Products, Related Products and Raw Materials (GA Fett)” has developed the following method for the determination of isomeric diacylglycerols in virgin olive oils to detect the freshness of oils. It is intended to include this method in Section C, Chapter VI of the German Standard Methods.*  相似文献   

18.
The thermal degradation kinetics of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [poly(HB–HV)] under nitrogen was studied by thermogravimetry (TG). The results show that the thermal degradation temperatures (To, Tp, and Tf) increased with an increasing heating rate (B). Poly(HB–HV) was thermally more stable than PHB because its thermal degradation temperatures, To(0), Tp(0), and Tf(0)—determined by extrapolation to B = 0°C/min—increased by 13°C–15°C over those of PHB. The thermal degradation mechanism of PHB and poly(HB–HV) under nitrogen were investigated with TG–FTIR and Py–GC/MS. The results show that the degradation products of PHB are mainly propene, 2‐butenoic acid, propenyl‐2‐butenoate and butyric‐2‐butenoate; whereas, those of poly(HB–HV) are mainly propene, 2‐butenoic acid, 2‐pentenoic acid, propenyl‐2‐butenoate, propenyl‐2‐pentenoate, butyric‐2‐butenoate, pentanoic‐2‐pentenoate, and CO2. The degradation is probably initiated from the chain scission of the ester linkage. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1530–1536, 2003  相似文献   

19.
Composite poly(ε‐caprolactone) (PCL)–silica materials for potential use in orthopaedic applications have been prepared by a sol–gel method using an experimental design approach to investigate the effect of synthesis variables, separately and together, on the physical form of the organic polymer. A combination of differential scanning calorimetry, X‐ray diffraction and Fourier‐transform infrared methods were used to obtain information on the arrangement of the organic polymer in the hybrid material. As our studies investigated the effect of synthesis variables simultaneously, it was possible to establish that the increase of tetraethyl orthosilicate (TEOS)/PCL and HCl/TEOS molar ratios decreased the poly(ε‐caprolactone) crystallinity and provided for a better mixing of the two phases. At a mechanistic level it was possible to show that increase in catalyst content affected the condensation of silicon containing species. In vitro calcium phosphate‐forming ability tests using the static biomimetic method have been carried out on selected PCL–silica sol–gels. In vitro bioactivity was only observed for PCL–silica sol–gel composites with high silica content (30% weight). Changes in catalyst levels had a smaller but still significant effect. Calcium phosphate formation on largely non‐porous surfaces is proposed to occur via the formation of a silica sol–gel layer, and is influenced by the topography and the chemistry of the materials surface. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
Alkyldiphenylphosphine oxides typically undergo α‐deprotonation with alkyllithium reagents. Here, the lithiation of differentially branched alkyldiphenylphosphine oxides was investigated and a diverse, but predictable reactivity was found. γ‐Branched derivatives undergo selective directed ortho‐metalation (DoM) using butyllithium and TMEDA as an additive. With decreasing degree of γ‐branching α‐lithiation becomes predominant. The ortho‐phosphinoyllithium intermediates are subject to functionalization and C C bond forming reactions, thus providing a convenient approach to new phosphine oxides and phosphine‐borane complexes, which have a good potential for an approach to new ligands for catalysis.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号