首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural fibers, such as Flax, Sisal, Hibiscus Sabdariffa, and Grewia optiva (GO) possess good reinforcing capability when properly compounded with polymers. These fibers are relatively inexpensive, easily available from renewable resources, and possess favorable values of specific strength and specific modulus. The mechanical performance of natural fiber‐reinforced polymers (FRPs) is often limited owing to a weak fiber‐ matrix interface. In contrast, urea–formaldehyde (UF) resins are well known to have a strong adhesion to most cellulose‐containing materials. This article deals with the synthesis of short G. optiva fiber‐reinforced UF polymer matrix‐based composites. G. optiva fiber‐reinforced UF composites processed by compression molding have been studied by evaluating their mechanical, physical, and chemical properties. This work reveals that mechanical properties such as: tensile strength, compressive strength, flexural strength, and wear resistance of the UF matrix increase up to 30% fiber loading and then decreases for higher loading when fibers are incorporated into the polymer matrix. Morphological and thermal studies of the matrix, fiber, and short FRP composites have also been carried out. The swelling, moisture absorbance, chemical resistance, and water uptake behavior of these composites have also been carried out at different intervals. The results obtained lay emphasis on the utilization of these fibers, as potential reinforcing materials in bio‐based polymer composites. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
In the present study, the mechanical and thermal properties of sisal fiber‐reinforced unsaturated polyester (UP)‐toughened epoxy composites were investigated. The sisal fibers were chemically treated with alkali (NaOH) and silane solutions in order to improve the interfacial interaction between fibers and matrix. The chemical composition of resins and fibers was identified by using Fourier‐transform infrared spectroscopy. The UP‐toughened epoxy blends were obtained by mixing UP (5, 10, and 15 wt%) into the epoxy resin. The fiber‐reinforced composites were prepared by incorporating sisal fibers (10, 20, and 30 wt%) within the optimized UP‐toughened epoxy blend. Scanning electron microscopy was used to analyze the morphological changes of the fibers and the adhesion between the fibers and the UP‐toughened epoxy system. The results showed that the tensile and flexural strength of (alkali‐silane)‐treated fiber (30 wt%) ‐reinforced composites increased by 83% and 55%, respectively, as compared with that of UP‐toughened epoxy blend. Moreover, thermogravimetric analysis revealed that the (alkali‐silane)‐treated fiber and its composite exhibited higher thermal stability than the untreated and alkali‐treated fiber systems. An increase in storage modulus and glass transition temperature was observed for the UP‐toughened epoxy matrix on reinforcement with treated fibers. The water uptake behavior of both alkali and alkali‐silane‐treated fiber‐reinforced composites is found to be less as compared with the untreated fiber‐reinforced composite. J. VINYL ADDIT. TECHNOL., 23:188–199, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
The mechanical properties of the biobased fiber and resins have been characterized and moisture influence on the behavior of these materials has been studied. Commercially available biobased thermoset resins (Tribest, EpoBioX, Palapreg, Envirez SA, and Envirez SB) and regenerated cellulose fibers (Cordenka) have been conditioned at different levels of relative humidity (as received, dried, 41, 70, and 90%) to obtain materials with different moisture content. The following properties of polymers were measured: tensile, flexural (3P‐bending), impact strength (unnotched Charpy), and fracture toughness (compact tension). The results of characterization of biobased thermosets were compared against data for epoxy Araldite LY556, which is used as reference resin. RCF bundles (with and without twist, extracted from fabric) as well as single fibers separated from these bundles were tested in tension. In general biobased resins performed well, moreover EpoBioX showed better properties than synthetic epoxy. POLYM. COMPOS., 35:1150–1159, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
《Polymer Composites》2017,38(5):837-845
Green composites, a bio‐based polymer matrix is reinforced by natural fibers, are special class of bio‐composites. Interest about green composites is continuously growing because they are environment‐friendly. This study describes the preparation and mechanical characterization of green composites using polylactic acid (PLA) matrix including chicken feather fiber (CFF) as reinforcement. Extrusion and an injection molding process were used to prepare CFF/PLA composites at a controlled temperature range. CFF/PLA composites with fiber mass content of 2%, 5%, and 10% were manufactured. The effects of fiber concentration and fiber length on mechanical properties of CFF/PLA composites have been studied. Mechanical properties of composites were investigated by tensile, compression, bending, hardness, and Izod impact testing. The results of experiments indicated that Young's modulus, compressive strength, flexural modulus, and hardness of the PLA reinforced CFF composites are higher but tensile strength, elongation at break, bending strength and impact strength of them are lower than pure PLA. The results indicate that these types of composites can be used for various applications. POLYM. COMPOS., 38:837–845, 2017. © 2015 Society of Plastics Engineers  相似文献   

5.
This work is a comprehensive study of the effect of extrusion process parameters and formulation on the properties of polypropylene (PP)/short flax fiber composites. The parameters that were varied during the twin‐screw extrusion process were screw configuration, revolutions per minute (rpm), extrusion temperature, and flow rate. The effect of the feeding zone location of cellulosic fiber was also considered. This study investigates the effect of the formulation, cellulosic fiber content, the presence of a coupling agent, and of a reactive additive on composite performance. The composites were characterized in terms of morphology and microstructure, fiber length, rheological, thermal, and mechanical properties. Sensibility to humidity and recyclability were also considered. When compared with as‐received PP, the tensile strength of injection‐molded parts increased with cellulosic content by up to 40 vol %, and the tensile modulus increased 3.5 times when a combination of coupling and reactive agents was used. Exposed to controlled humidity of 50% during 1 year, these composites exhibited a very low level of humidity uptake around 0.85 wt %. The processability of these materials using a cast film line and the mechanical properties of extruded sheets are also presented. Furthermore, these materials demonstrate a good recyclability using injection molding by keeping the integrality of their mechanical properties after five reprocessing cycles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41528.  相似文献   

6.
To address the growing emphasis on the use and development of sustainable materials, bio‐based polymers and fibers are processed to prepare entirely bio‐based fiber‐reinforced ‘green’ composites. To enable these new materials to perform in lightweight vehicle and infrastructural applications, they must be characterized both structurally and in terms of their various performance characteristics. The results of preparation and characterization of bio‐based composites comprising jute fabric and soy protein concentrate (SPC) modified with glycerol and/or halloysite nanotubes (HNT) are reported herein as a first look at the flammability of these bio‐based nanocomposites. The results reveal that SPC has lower flammability (heat release capacity) than petrochemical‐based resins, such as epoxies and vinyl esters. In addition, incorporating 5% mass fraction of HNT is found to reduce the composite flammability, while having no negative impact on the mechanical properties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Adding caulis spatholobi residue fiber (CSRF) to reinforce biodegradable poly (propylene carbonate) (PPC) as a reinforcement was investigated. The morphology of CSRF before and after continuous steam explosion, the mechanical and morphological properties of PPC/CSRF bio‐composites with different fiber content were investigated using scanning electron microscopy (SEM), mechanical tests and infrared spectroscopy. The tensile strength and modulus, and impact strength of the bio‐composites increased as the content of fiber increased in composites, the elongation at break declined. It was found that a small stay‐segment in the stress–strain curves and pulled‐out fibers on fractured surfaces of the composites. Infrared spectra result showed esterification and formation of hydrogen bonds between the matrix and CSRF. The fractured surface of the composites addressed a promotion of the interfacial interactions. POLYM. COMPOS., 35:208–216, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
Betel nut leaf fiber (BNLF) is a new finding as cellulosic filler for polymer composites. Its main constituents are 75% α‐cellulose, 12% hemicelluloses, 10% lignin, and 3% others matter, viscosity average molecular weight 132,000 and degree of crystallinity 70%. In the present work, BNLF reinforced polypropylene (PP) composites were prepared using heat press molding method. 5–20 wt% short length fiber is taken for getting benefits of easy manufacturing and the fiber was chemically treated with NaOH, dicumyl peroxide (DCP), and maleic anhydride‐modified PP (MAPP) to promote the interfacial bond with PP. The extent of modification of fiber was assessed on the basis of morphology, bulk density, moisture absorption, thermal, and mechanical properties of untreated fiber, treated fiber, and their reinforcing PP composites. The tensile and flexural strength of composites increase with the increase of fiber loading up to 10 and 20 wt%, respectively. It was also observed that Young's modulus and flexural modulus increase with fiber loading. The thermal degradation behavior of resulting composites was investigated. Among the various treated fibers, MAPP‐treated fiber composite showed best interfacial interactions as well as mechanical and thermal properties. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

9.
The degree of mechanical reinforcement that could be obtained by the introduction of henequen cellulosic fibers in a low-density polyethylene, LDPE, matrix was assessed experimentally. Composite materials of LDPE-henequen cellulosic fibers were prepared by mechanical mixing. The concentration of randomly oriented fibers in the composite ranged between 0 and 30% by volume. The tensile strength of these composite materials increased up to 50% compared to that of LDPE. There is also a noticeable increase in Young's modulus for the composite materials that compares favorably with that of LDPE. As expected, the addition of the fibers decreases the ultimate strain values for the composite materials. The thermal behavior of the LDPE-henequen cellulosic fibers materials, studied by differential scanning calorimetry, DSC, showed that the presence of the fibers does not affect the thermal behavior of the LDPE matrix; thus, the interaction between fiber and matrix is probably not very intimate. Preimpregnation of the cellulosic fibers in a LDPE-xylene solution and the use of a silane coupling agent results in a small increment in the mechanical properties of the composites, which is attributed to an improvement in the interface between the fibers and the matrix. The shear properties of the composites also increased with increasing fiber content and fiber surface treatment. It was also noted that the fiber surface treatment improves fiber dispersion in the matrix. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 197–207, 1997  相似文献   

10.
In this research, the mechanical, acoustical, thermal, morphological, and infrared spectral properties of untreated, heat and alkaline‐treated sisal fiber‐reinforced poly‐lactic‐acid bio‐composites were analyzed. The bio‐composite samples were fabricated using a hot press molding machine. The properties mentioned above were evaluated and compared with heat‐treated and alkaline‐treated sisal fibers. Composites with heat‐treated sisal fibers were found to exhibit the best mechanical properties. Thermo‐gravimetric analysis (TGA) was conducted to study the thermal degradation of the bio‐composite samples. It was discovered that the PLA‐sisal composites with optimal heat‐treated at 160°C and alkaline‐treated fibers possess good thermal stability as compared with untreated fiber. The results indicated that the composites prepared with 30wt % of sisal had the highest sound absorption as compared with other composites. Evidence of the successful reaction of sodium hydroxide and heat treatment of the sisal fibers was provided by the infrared spectrum and implied by decreased bands at certain wavenumbers. Observations based on scanning electron microscopy of the fracture surface of the composites showed the effect of alkaline and heat treatment on the fiber surface and improved fiber‐matrix adhesion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42470.  相似文献   

11.
New bio‐fiber composites (UPRC) cured by ultraviolet radiation were produced using kenaf fiber as reinforcing agent and unsaturated polyester resins as matrix in the presence of styrene and IRGACURE 1800 as photoinitiator. Unsaturated polyester resins based on palm oil were prepared from various ratios of monoglyceride (MG)/maleic anhydride (MA) by the interaction of the corresponding MG monomer, with different equivalents of MA, in the presence of 2‐methylimidazole as catalyst. The various characteristics of the obtained bio‐fiber composites, including mechanical, gel content, water absorption and thickness swelling test, thermal analysis, were determined and the data were discussed. Bio‐fiber composite with MG: MA ratio (1 : 4 eq./eq.) showed better mechanical properties (tensile, flexural, and impact strength) than other formulations. Gel content increased as the amount of MA was increased up to the MG: MA ratio was 1 : 4 (eq./eq.) then slightly decreased at the higher ratio formulation. Bio‐fiber composite (UPRCc) was considered the best prepared bio‐fiber composite which contained higher degree double bond, cross‐linking and thermal stability. Moreover, morphological study of selected examples of the formed bio‐fiber composites was also carried out and showed the evidence of the enhancement of the compatibility between fiber and polymer matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Natural cellulosic fibers, including hemp, are increasingly being used for composite reinforcement. However, their poor adhesion with synthetic resins limits their use as reinforcing agent. It is generally accepted that interfacial adhesion can be best described in terms of dispersion forces and acid–base interactions. Therefore, there is a need for quantitative determination of acid–base character of natural cellulosic fibers. In this study, acid–base characteristics and dispersion component of surface energy of hemp fibers have been determined using inverse gas chromatography. Effect of alkalization and acetylation on acid–base characteristics has also been examined. The results indicate that alkalization and acetylation make the hemp fiber amphoteric, thereby improving their potential to interact with both acidic and basic resins. Finally, a parallel is drawn between the changes in fiber‐matrix acid–base interactions and the actual improvement in the mechanical properties of the composites manufactured using resin transfer molding process. POLYM. ENG. SCI. 46:269–273, 2006. © 2006 Society of Plastics Engineers  相似文献   

13.
Effects of butantetracarboxylic acid (BTCA) modification, choice of matrix, and fiber volume fraction on hygroexpansion of wood fiber composites have been investigated. Untreated reference wood fibers and BTCA‐modified fibers were used as reinforcement in composites with matrices composed of polylactic acid (PLA), polypropylene (PP), or a mixture thereof. The crosslinking BTCA modification reduced the out‐of‐plane hygroexpansion of PLA and PLA/PP composites, under water‐immersed and humid conditions, whereas the swelling increased when PP was used as matrix material. This is explained by difficulties for the BTCA‐modified fibers to adhere to the PP matrix. Fiber volume fraction was the most important parameter as regards out‐of‐plane hygroexpansion, with a high‐fiber fraction leading to large hygroexpansion. Fiber‐matrix wettability during processing and consolidation also showed to have a large impact on the dimensional stability and moisture uptake. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

14.
Biocomposites are prepared from a cheap, renewable natural fiber, coir (coconut fiber) as reinforcement with a biodegradable polyester amide (BAK 1095) matrix. In order to have better fiber‐matrix interaction the fibers are surface modified through alkali treatment, cyanoethylation, bleaching and vinyl grafting. The effects of different fiber surface treatments and fiber amounts on the performance of resulting bio‐composites are investigated. Among all modifications, cyanoethylated coir‐BAK composites show better tensile strength (35.50 MPa) whereas 7% methyl methacrylate grafted coir‐BAK composites show significant improvement in flexural strength (87.36 MPa). The remarkable achievement of the present investigation is that a low strength coir fiber, through optimal surface modifications, on reinforcement with BAK show an encouraging level of mechanical properties. Moreover, the elongation at break of BAK polymer is considerably reduced by the incorporation of coir fibers from nearly 400% (percent elongation of pure BAK) to 16‐24% (coir‐BAK biocomposites). SEM investigations show that surface modifications improve the fiber‐matrix adhesion. From biodegradation studies we find that after 52 days of soil burial, alkali treated and bleached coir‐BAK composites show significant weight loss. More than 70% decrease in flexural strength is observed for alkali treated coir‐BAK composites after 35 days of soil burial. The loss of weight and the decrease of flexural strength of degraded composites are more or less directly related.  相似文献   

15.
Lignocellulosic materials can be used for the development of bio‐based composites. This study explores the potential of long bamboo fiber bundles extracted directly from bamboo stems using the novel mechanical method and bamboo‐based fiber composites (BFC) fabricated using long bamboo fiber bundles and phenolic resins via cold pressing and thermal cure process. The microstructure, mechanical properties, and durability of BFC were evaluated, results being compared with raw bamboo and other commercialized bamboo fiber composites. The mechanical properties of BFC reinforced with 87% (w/w) long bamboo fiber bundles increased more than 50% than those of raw bamboo and were significantly higher than those of other bamboo‐based composites. Lower water absorption and thickness swelling were obtained in the case where bamboo fiber bundles with the small fineness. Higher tensile strength was obtained in the case where bamboo fiber bundles with large sizes of bamboo fiber bundles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40371.  相似文献   

16.
To determine the effect of moisture regain of wool on atmospheric pressure plasma treatment results, wool fibers and fabrics conditioned in 100% relative humidity (RH) and 65% RH were treated by an atmospheric pressure plasma jet with pure helium and helium/oxygen mixed gas, respectively. Scanning electron microscope (SEM) indicated that scales of wool fiber were smoothened for fibers conditioned in the 100% RH. X‐ray photoelectron spectroscopy (XPS) showed that carbon content decreased substantially after the plasma treatment. Surface chemical composition of 100% RH conditioned groups changed more significantly than the 65% RH conditioned groups. Water contact angle decreased significantly after the plasma treatments. In shrinkage test, plasma‐treated wool fabrics preconditioned in 100% RH showed the lowest shrinkage ratios of 5% and 6%, below 8% is required for machine‐washable wool fabrics according to ISO standard. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The effects of seawater exposure on the mechanical properties of unidirectional T700 carbon fiber/vinylester (510A) composites have been examined. Carbon fibers with two different types of sizings (F and G) were studied. Dynamic mechanical analysis testing of the neat resin and a carbon/vinylester composite revealed similar viscoelastic responses and glass transition temperatures indicating same type of cured resin for both cases. An analysis of moisture absorption dynamics of the composites revealed Fickian behavior. The composites absorbed more moisture than the resin. The moisture up‐take in the composites is dominated by the fiber/matrix region. A comprehensive mechanical test program involving tension, compression, and shear tests was conducted on the composites at dry and saturated conditions. Composites with F‐sized carbon fibers displayed overall higher strengths than those with G‐sized fibers at both dry and moisture‐saturated conditions. Moisture absorption was found to have a moderate influence on most composite strengths, except for the in‐plane and interlaminar shear strengths, where reductions in the range of 10–16% occurred. POLYM. COMPOS., 35:1559–1569, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
Jute fabric‐reinforced sandwich composites were fabricated using engineering thermoplastics. The jute fabrics were precoated with thermosetting resin to improve their thermal resistance before molding of the composites. Thermal gravimetric analysis (TGA) studies revealed that the resin coated fabrics decomposed at higher temperature than the uncoated jute. The onset of degradation of the coated fibers also falls between that of jute fibers and the thermoset resins. This indicates the presence of good interfacial bonding between jute fibers and both resins. Isothermal TGA studies revealed that jute could withstand brief exposure to higher temperature at 270 and 290°C. The sandwich composites were fabricated at 270°C by compression molding for 1.5 and 3 min in each case, and then characterized by flexural, tensile and morphological studies, i.e., SEM and optical microscopy. The uncoated jute fabric yielded composites of superior mechanical properties even with 3 mins molding at 270°C which is close to the degradation temperature of uncoated jute fibers. This is an indication that it is feasible to prepare jute fiber filled engineering polymer composites provided the exposure time at high temperature during processing does not exceed 3 mins as determined by TGA isothermal studies. SEM studies revealed strong fiber/matrix interfacial bonding between jute and the thermoset resins while the inferior mechanical properties of the resin coated sandwich composites could be attributed to the poor interfacial bonding between the already cured thermoset coating and the matrix based on optical microscopy of the polished cross‐sections. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
The surface properties at the interface between thermoplastic and cellulosic fibers strongly influence the mechanical properties of plastic/cellulosic fiber composites. This paper examines the role of surface acid-base properties of plasticized PVC and cellulosic fibers on the mechanical properties of the composites. The acid-base surface characteristics of cellulosic fibers were modified by treating the fibers with γ-aminopropyltriethoxysilane (A-1100), dichlorodiethylsilane, phthalic anhydride, and maleated polypropylene. The empirical acid (KA) and base (KD) characteristics (i.e., electron donor/acceptor abilities) of untreated and treated fibers, as well as plasticized PVC, were determined using inverse gas chromatography (IGC) technique. These parameters were used to yield information on the acid-base pair interactions that were correlated with the tensile and notched Izod impact properties of the composites. Acid-base pair interactions have been found to be a valuable parameter in the design of surface modification strategies intended to optimize the tensile strength of the composites. By tailoring the acid-base characteristics of cellulosic fibers and plasticized PVC, a composite with equal tensile strength and greater modulus than unfilled PVC was developed. However, the acid-base factors did not correlate with tensile modulus, the elongation at break, and the notched Izod impact property of PVC/newsprint fiber composites. Aminosilane has been observed to be a suitable adhesion promoter for PVC/wood composites improving significantly the tensile strength of the composites. Other treatments (dichlorodiethylsilane, phtalic anhydride, and maleated polypropylene) were found to be ineffective, giving similar strength compared to the composites with untreated cellulosic fibers. FTIR spectroscopy results suggested that aminosilane was effective because treated cellulosic fibers can react with PVC to form chemical bonds. The resulting bond between PVC and cellulosic fibers accounts for the effectiveness of aminosilane, when compared with other coupling agents.  相似文献   

20.
Coir and abaca fiber‐reinforced linear low density polyethylene (LLDPE) composites (30 wt% fiber) were prepared by compression molding. Coir and abaca fibers were treated with methyl methacrylate (MMA) using ultraviolet radiation to improve the mechanical properties of the composites. Concentration of MMA and radiation dose was optimized. It was found that 30% MMA in methanol along with photoinitiator Darocur‐1173 (2%) and 15th pass of radiation rendered better performance. Chemically treated fiber‐reinforced specimens yielded better mechanical properties compared to the untreated composites, whereas coir fiber composites had better mechanical properties than abaca fiber reinforced ones. For the improvement of the properties, optimized coir (coir fiber treated with 30% MMA) and abaca (abaca fiber treated with 40% MMA) fibers were again treated with aqueous starch solution (2%–8%, w/w) for 2–7 min. Composites made of 3%‐starch‐treated coir fiber (5 min soaking time) showed the best mechanical properties than that of abaca‐fiber‐based composites. Water uptake and soil degradation tests of the composites were also performed. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号