首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied interfacial shear strength (IFSS) in carbon fiber (CF)‐reinforced poly (phthalazinone ether ketone) (PPEK) composites system, with emphasis on the influence of forming temperature of composite and sizing agent on CFs. To obtain apparent IFSS of CF‐reinforced PPEK composites shaped at various forming temperatures ranged from 20 up to 370°C, microbond test was carried out at single‐fiber composites. Results of microbond test showed that apparent IFSS was directly proportional to the difference between the matrix solidification temperature (forming temperature) and the test temperature and approximately 80% of the apparent IFSS in CF/PPEK composite system was attributed to residual radial compressive stress at the fiber/matrix interface. By sizing CF with sizing agent, the wettability of the fiber by the matrix was improved and the final apparent IFSS was also improved. POLYM. COMPOS., 34:1921–1926, 2013. © 2013 Society of Plastics Engineers  相似文献   

2.
This article aims to improve interfacial properties of carbon fiber‐reinforced poly(phthalazinone ether ketone) (PPEK) composites by means of preparing carbon nanotube (CNT)/carbon fiber hybrid fiber. XPS was used to characterize the chemical structure of unsized carbon fiber and SEM was used to observe the surface topography of carbon fibers. Specific area measurement, dynamic contact angle, and interfacial shear strength (IFSS) testing were performed to examine the effect of CNT on the interfacial properties of carbon fiber/PPEK composites. By the introduction of CNT to the interphase of carbon fiber‐reinforced PPEK composites, an enhancement of IFSS by 55.52% was achieved. Meanwhile, the interfacial fracture topography was also observed and the reinforcing mechanism was discussed. POLYM. COMPOS., 36:26–33, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
The overall mechanical performance of glass–carbon hybrid fibers reinforced epoxy composites depends heavily upon fiber–matrix interfacial properties and the service temperatures. Fiber‐bundle pull‐out tests of glass (GF) and/or carbon fiber (CF) reinforced epoxy composites were carried out at room and elevated temperatures. Graphene nanoplatelets were added in the interfacial region to investigate their influence on the interfacial shear strength (IFSS). Results show that IFSS of specimens with fiber‐bundle number ratio of GF:CF = 1:2 is the largest among the hybrid composites, and a positive hybridization effect is found at elevated temperatures. IFSS of all the specimens decreases with the increasing of test temperatures, while the toughness shows a contrary tendency. As verified by scanning electron microscopy observations, graphene nanoplatelets on fiber surface could enhance the IFSS of pure glass/carbon and hybrid fibers reinforced epoxy composites at higher temperatures significantly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46263.  相似文献   

4.
Carbon nanotube (CNT) fibers spun from CNT arrays were used as the reinforcement for epoxy composites, and the interfacial shear strength (IFSS) and fracture behavior were investigated by a single fiber fragmentation test. The IFSS between the CNT fiber and matrix strongly depended on the types of liquid introduced within the fiber. The IFSS of ethanol infiltrated CNT fiber/epoxy varied from 8.32 to 26.64 MPa among different spinning conditions. When long-molecule chain or cross-linked polymers were introduced, besides the increased fiber strength, the adhesion between the polymer modified fiber and the epoxy matrix was also significantly improved. Above all, the IFSS can be up to 120.32 MPa for a polyimide modified CNT fiber, one order of magnitude higher than that of ethanol infiltrated CNT fiber composites, and higher than those of typical carbon fiber/epoxy composites (e.g. 60–90 MPa). Moreover, the composite IFSS is proportional to the tensile strength and modulus of the CNT fiber, and decreases with increasing fiber diameter. The results demonstrate that the interfacial strength of the CNT fiber/epoxy can be significantly tuned by controlling the fiber structure and introducing polymer to optimize the tube–tube interactions within the fiber.  相似文献   

5.
《Polymer Composites》2017,38(1):27-31
A novel method was developed for grafting poly(acrylamide) (PAAM) on to the carbon fiber (CF) surface via reversible addition–fragmentation chain transfer (RAFT) polymerization to improve the interaction between carbon fibers and epoxy matrix in the composites system. The carbon fibers were first treated with nitric acid and γ‐methacryloxypropyltrimethoxy silane (KH570). Then, the PAAM was grafting onto the carbon fiber surface via RAFT polymerization. The resulted carbon fibers functionalized with PAAM (CF‐PAAM) were characterized by FTIR, XPS, and TGA, and the results revealed that CF‐PAAM were synthesized successfully. The introduction of PAAM chains could make the fiber surface rougher and introduce a large numbers of –NH2 groups, which can improve the interfacial adhesion in the composites. The microbond test results showed that the interfacial shear strength (IFSS) of the composites reinforced by CF‐PAAM has been enhanced about 107%. POLYM. COMPOS., 38:27–31, 2017. © 2015 Society of Plastics Engineers  相似文献   

6.
The grafting force of carbon nanotube (CNT) on carbon fiber (CF) and the wettability of CF surface were experimentally studied, where hierarchical CNT/CF reinforcement was prepared using chemical vapor deposition (CVD). Then, their effects on interfacial improvement were experimentally and theoretically investigated. The results show that the CNT/CF grafting force is so strong, more than 5 μN, and CNT/CF attachment can sustain the fracture of the CNTs. This is expected to be contributed to the improvement of interfacial properties. However, the deposited catalyst deteriorates the wettability, which could seriously degrade the interfacial properties. As a result, experimental results from the micro-droplet test show that there is only a 30% increase in the interfacial shear strength of hierarchical CNT/CF reinforced composite comparing with that of as-received CF reinforced composite. An analytical model was developed to predict the effects of CNT/CF grafting force on interfacial improvement, and the predicted results are in agreement with the experimental one.  相似文献   

7.
The influence of sizing agent on interfacial shear strength (IFSS) of carbon fiber/epoxy (CF/EP) and carbon fiber/bismaleimide (CF/BMI) was investigated. Since sizing agent can alter physicochemical properties of CF surface, possible affecting factors, including sizing reactivity, chemical reactions between sizing and resin, wettability of fiber with resin, fiber surface roughness, and chemical composition of fiber surface, were discussed. It is found that contact angle of fiber with resin and sufficient chemical reactions between sizing and resin reveal strong correlation with the interfacial adhesion of CF/EP and CF/BMI, while the effect of surface roughness and the amount of oxygen on the fiber surface are relatively weak. Due to EP type of the composition, the sizing agent tends to improve the wettability of CF with EP, while goes against for the fiber with BMI. POLYM. COMPOS., 254–261, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
Poly(p‐phenylene benzobisoxazole) (PBO) fiber with a smooth surface exhibits limited interfacial interaction with resin matrix. One of the effective strategies to improve the adhesion between the fiber and resin matrix is through surface modification of the fiber. In this study, we have proposed a novel surface treatment agent based on phosphoester cross‐linked castor oil (PCCO) for effective surface treatment of PBO fibers. The surface treatment agent was prepared by a simple cross‐linking reaction between hydroxy phosphorylated castor oil (PCO) and epoxy resin, with alcohol as the solvent at 65°C. Once the PBO fiber was treated with this agent, the interfacial adhesion between the PBO fiber and the epoxy resin could then be improved. Systematic analyses suggest that the surface treatment with (PCO + epoxy)/alcohol solution improves the interaction of the PBO fiber with the epoxy resin matrix. The PCCO coated onto the surface of PBO fiber acts as a coupling agent, improving the interfacial shear strength (IFSS) of the PBO fiber/epoxy resin composite. Results indicate a 156% increase in IFSS without compromising the mechanical properties of the fiber. POLYM. COMPOS., 37:1198–1205, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
In this article, effects of electrochemical oxidation and sizing treatment of PAN‐based carbon fibers (CFs) on the tensile properties, surface characteristics, and bonding to epoxy were investigated. As found, the electrochemical oxidation improves the tensile strength of single CF by 16.0%, due to weakening the surface stress concentration and smoothing the surface structure. Further sizing treatment shows a negligible effect on the tensile strength. Both oxidation and sizing treatments significantly improve the wettability and surface energies of CFs by introducing oxygen‐containing functional groups. Microbond test was conducted to characterize the interfacial shear strength (IFSS) between a single fiber and an epoxy droplet. The oxidation treatment increases IFSS slightly, which is due to the contradictory effects of the formation of chemical bonds between the resin and CFs, and the reduced mechanical interlocking. Further sizing treatment significantly enhances IFSS from 73.6 to 81.0 MPa, due to the formation of vast chemical bonds. Furthermore, the oxidation and sizing treatment can effectively reduce the degradation of IFSS to the hygrothermal ageing for the CF/epoxy system. POLYM. COMPOS., 37:2921–2932, 2016. © 2015 Society of Plastics Engineers  相似文献   

10.
Multiwalled carbon nanotube (MWCNT)‐welded carbon fibers (CFs) were prepared by a three‐step process, which included polyacrylonitrile (PAN) coating, MWCNT absorption, and heat treatment. The structure of these materials was characterized by scanning electron microscopy, Fourier‐transform infrared spectroscopy, and Raman spectroscopy. The MWCNTs were uniformly assembled on the surface of the PAN‐coated CFs and welded by a PAN‐based carbon layer after heat treatment. The contact angle of the MWCNT‐welded CFs in the epoxy resins was 41.70°; this was 22.35% smaller than that of the unsized CFs. The interfacial shear strength (IFSS) of the MWCNT‐welded CF–epoxy composite was 83.15 MPa; this was 28.89% higher than that of the unsized CF–epoxy composite. The increase in the IFSS was attributed to the enhancement of adhesions between the CFs and polymer matrix through the welding of the MWCNTs on the CFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45027.  相似文献   

11.
The influence of the degree of crystallinity on interfacial properties in carbon and SiC two‐fiber reinforced poly(etheretherketone) (PEEK) composites was investigated by the two‐fiber fragmentation test. This method provides a direct comparison of the same matrix conditions. The tensile strength of the PEEK matrix and the interfacial shear strength (IFSS) of carbon or SiC fiber/PEEK exhibited the maximum values at around 30% crystallinity, and then showed a decline. The tensile modulus increased continuously with an increase in the degree of crystallinity. Spherulite sizes in the PEEK matrix became larger as the cooling time from the crystallization temperature increased. Transcrystallinity of carbon fiber/PEEK was developed easily and more densely than with SiC fiber/PEEK. This might have occurred because the unit cell dimensions of the crystallite in the fiber axis direction on the carbon surface was more suitable for making nucleation sites. The IFSS of carbon fiber/PEEK was significantly higher than that of SiC fiber/PEEK because it formed transcrystallinity of IFSS more favorably.  相似文献   

12.
In this study, a novel method consisting of coating carbon fibers (CF) with graphite nanoplatelets (GnP) is investigated for its ability to modify the mechanical properties in the interphase region. Coating the CF was achieved by immersing CF in a solution of GnP dispersed in an epoxy‐based solution for a few seconds. The influence of the processing conditions on the properties of the coating (thickness, homogeneity, quality of the GnP dispersion) is reported. Interfacial adhesion and the associated failure modes were evaluated by the single fiber fragmentation test. The maximum value of interfacial shear strength (IFSS) was achieved when a relative GnP concentration of 7.9 wt% on CFs, which led to 45 and 34% improvements in IFSS in comparison with the non‐coated CF and epoxy coated CF, respectively. POLYM. COMPOS., 37:1549–1556, 2016. © 2014 Society of Plastics Engineers  相似文献   

13.
To exploit the reinforcement potential of the fibers in advanced composites, it is necessary to reach a deeper understanding on the interrelations between fiber surface chemical and energetic characteristics, wetting properties, and mechanical performance. In this study CF/EP was chosen as a model thermoset composite material, whereby a hot-curing epoxy (EP) system served as the matrix. The fibers selected were PAN-based high-tenacity carbon fibers (CF) of varying surface treatment level and/or coating. Surface free energies for the carbon fibers were determined by dynamic contact angle measurements in a variety of test liquids of known polar and dispersive surface tension utilizing a micro-Wilhelmy wetting balance and following the methods proposed by Zisman and Owens and Wendt, respectively. Surface treatment resulted in an increase of the polar fraction of the fiber surface free energy, whereas its dispersive part remained unaffected. The interfacial shear strength (IFSS) as determined in the microdroplet pull-off test was enhanced both by intensification of the surface treatment and sizing the CF with an EP component. A linear relationship between IFSS and the polar fraction of the fiber surface free energy γps was found. Further attempts were made to find correlations between surface free energy of the CF and laminate strengths measured in shear and transverse tension. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The changes in interfacial fracture energy of three kinds of commercially sized carbon fiber (CF)/epoxy resin composites in the range from ambient temperature to 130°C were investigated using the single‐fiber fragmentation test to evaluate the heat resistance of the interphase. The effects of CF sizing on the interfacial bonding property were studied using desized CF/epoxy resin composites. Thermogravimetric analysis and differential scanning calorimetry of the combination of sizing and matrix were employed to investigate the role of sizing on the variations in the fiber/matrix interfacial property under elevated temperature. The interfacial fracture energy values of all the studied CF composites were found to decrease quickly during the initial stage of temperature rise and drop gradually at higher temperature. At elevated temperature, the desized CF composites had higher heat resistance than the corresponding sized fiber composites. The differences in the interfacial heat resistance among the three kinds of CF composites and the difference in the interfacial thermal stability between the sized and the desized fiber composites were related to different glass transition temperatures of the interphases. The interaction between sizing and the matrix and the chain motion of the crosslink structure of the interphase has been suggested to determine the interfacial heat resistance. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
The mutual irradiated aramid fibers in 1,4‐dichlorobutane was ammoniated by ammonia/alcohol solution, in an attempt to improve the interfacial properties between aramid fibers and epoxy matrix. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), dynamic contact angle analysis (DCA), interfacial shear strength (IFSS), and single fiber tensile testing were carried out to investigate the functionalization process of aramid fibers and the interfacial properties of the composites. Experimental results showed that the fiber surface elements content changed obviously as well as the roughness through the radiation and chemical reaction. The surface energy and IFSS of aramid fibers increased distinctly after the ammonification, respectively. The amino groups generated by ammonification enhanced the interfacial adhesion of composites effectively by participating in the epoxy resin curing. Moreover, benefited by the appropriate radiation, the tensile strength of aramid fibers was not affected at all. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44924.  相似文献   

16.
This study examined the rupture mechanisms of an orthogonal 3D woven SiC fiber/BN interface/SiC matrix composite under combination of constant and cyclic tensile loading at elevated temperature in air. Monotonic tensile testing, constant tensile load testing, and tension–tension fatigue testing were conducted at 1100 °C. A rectangular waveform was used for fatigue testing to assess effects of unloading on the damage and failure behavior. Microscopic observation and single-fiber push-out tests were conducted to reveal the rupture mechanisms. Results show that both oxidative matrix crack propagation attributable to oxidation of the fiber–matrix interface and the decrease in the interfacial shear stress (IFSS) at the fiber–matrix interface significantly affect the lifetime of the SiC/SiC composites. A rupture strength degradation model was proposed using the combination of the oxidative matrix crack growth model and the IFSS degradation model. The prediction roughly agreed with the experimentally obtained results.  相似文献   

17.
Interests in improving poor interfacial adhesion in carbon fiber‐reinforced polymer (CFRP) composites has always been a hotspot. In this work, four physicochemical surface treatments for enhancing fiber/matrix adhesion are conducted on carbon fibers (CFs) including acid oxidation, sizing coating, silane coupling, and graphene oxide (GO) deposition. The surface characteristics of CFs are investigated by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, interfacial shear strength, and interlaminar shear strength. The results showed that GO deposition can remarkably promote fiber/matrix bonding due to improved surface reactivity and irregularity. In comparison, epoxy sizing and acid oxidation afford enhancement of IFSS owing to effective molecular chemical contact and interlocking forces between the fiber and the matrix. Besides, limited covalent bonds between silane coupling and epoxy matrix cannot make up for the negative effects of excessive smoothness of modified CFs, endowing them inferior mechanical properties. Based on these results, three micro‐strengthening mechanisms are proposed to broadly categorize the interphase micro‐configuration of CFRP composite, namely, “Etching” “Coating”, and “Grafting” modifications, demonstrating that proper treatments should be chosen for combining optimum interfacial properties in CFRP composites. POLYM. ENG. SCI., 59:625–632, 2019. © 2018 Society of Plastics Engineers  相似文献   

18.
Grafting carbon nanotubes (CNTs) directly on carbon fibers represents a promising approach in order to strengthen the weak interface between carbon fibers and polymer matrix in carbon fiber reinforced polymer composites (CFRCs). We have carried out direct growth of CNTs on carbon fibers by using two different catalytic chemical vapor deposition (CVD) processes, namely the conventional CVD process based on catalytic thermal decomposition of ethylene and the oxidative dehydrogenation reaction between acetylene and carbon dioxide. The effect of various CVD growth parameters, such as temperature, catalyst composition and process gas mixture, was for the first time systematically studied for both processes and correlated with the mechanical properties of carbon fibers derived from single-fiber tensile tests. The growth temperature was found to be the most critical parameter in the presence of catalyst particles and reactive gasses for both processes. The oxidative dehydrogenation reaction enabled decreasing CNT growth temperature as low as 500 °C and succeeded to grow CNTs without degradation of carbon fiber's mechanical properties. The Weibull modulus even increased indicating partial healing of present defects during the CVD process. The new insights gained in this study open a way towards simple, highly reproducible and up-scalable process of grafting CNTs on carbon fibers without inducing any damages during the CVD process. This represents an important step towards CNT-reinforced CFRCs with higher damage resistance.  相似文献   

19.
The surface of high‐strength 73/27 HBA/HNA fibers was electrochemically modified in aqueous sodium hydroxide solution (10 wt %) with the change of the applied current to improve the interfacial shear strength (IFSS) of the fiber in the thermosetting matrix. A sodium component was identified on the surface of the treated fibers by scanning electron microscopy (SEM). The detection of sodium is best interpreted as the existence of a negative charged functional group ( COONa+) on the surface of the treated fibers. A pull‐out test was used to measure the IFSS of the HBA/HNA fibers and epoxy/amine cure system. According to the calculating value from Greszczuk's geometrical model, the IFSS increased with the applied current in the range of 50–450 mA. However, no further increase in the IFSS was observed for strong treatment (1500 mA). There was an optimum by applied current to obtain maximum IFSS. The electrochemical treatment of the 73/27 HBA/HNA copolyester fibers was effective in altering their surface chemistry and improving the interfacial adhesion at the moderate treating conditions. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 15–21, 1999  相似文献   

20.
Smooth polybenzobisoxazole (PBO) fiber has limited interfacial interaction with resin matrix. In this article, nano‐TiO2 coating on PBO fiber is applied to improve the interfacial adhesion between PBO fiber and epoxy resin. The test results suggest that the PBO fiber had good interaction with epoxy resin matrix after its treatment with n‐TiO2 sol. Nano TiO2 particle embedded onto PBO fiber surface, acting as a chock, which made fiber implanted into the resin better. This greatly improved the shear strengths (IFSS) of PBO fiber/epoxy resin composite. It has been found that a 56% increase in interfacial IFSS has achieved without sacrificing mechanical properties of fiber. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号