首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inclusion of nano‐clays into hydrogels is an efficient approach to produce nanocomposite hydrogels. The introduction of nano‐clay into hydrogels causes an increase in water absorbency. In the present work, Nanocomposite hydrogels based on kappa‐carrageenan were synthesized using sodium montmorillonite as nano‐clay. Acrylamide and methylenebisacrylamide were used as monomer and crosslinker, respectively. The structure of nanocomposite hydrogels was investigated by XRD and SEM techniques. Swelling behavior of nanocomposite hydrogels was studied by varying clay and carrageenan contents as well as methylenebisacrylamide concentration. An optimum swelling capacity was achieved at 12% of sodium montmorilonite. The swollen nanocomposite hydrogels were used to study water retention capacity (WRC) under heating. The results revealed an increase in WRC due to inclusion of sodium montmorilonite clay. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
pH‐ and temperature‐responsive semi‐interpenetrating nanocomposite hydrogels (NC hydrogels) were prepared with surface‐functionalized graphene oxide (GO) as the crosslinker, N‐isopropylacrylamide (NIPAM) as the monomer, and chitosan (CS) as an additive. The effects of 3‐(trimethoxysilyl)propylmethacrylate‐modified GO sheets and CS content on various physical properties were investigated. Results show that PNIPAM/CS/GO hydrogels undergo a large volumetric change in response to temperature. Swelling ratios of PNIPAM/CS/GO hydrogels are much larger than those of the conventional organically crosslinked PNIPAM hydrogels. The deswelling test indicates that the deswelling rate was greatly enhanced by incorporating CS into the hydrogel network and using the surface‐functionalized GO as the crosslinker. The pH‐sensitivity of PNIPAM/CS/GO hydrogels is evident below their volume phase transition temperature. Moreover, the PNIPAM/CS/GO hydrogels have a much better mechanical property compared with traditional hydrogels even in a high water content of 90%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41530.  相似文献   

3.
This article reports the temperature‐sensitive, green tea (GT)‐based silver‐nanocomposite hydrogels for bacterial growth inactivation. The temperature‐sensitive hydrogels were prepared via free‐radical polymerization using temperature‐sensitive N‐isopropylacrylamide (NIPAM) monomer with GT as the hydrogel matrix. The nanocomposite hydrogels were encapsulated with silver ions via swelling method, which was later reduced to silver nanoparticles using Azadirachta indica leaf extract. The temperature‐sensitive silver nanocomposite hydrogels were analyzed by using Fourier transforms infrared, UV–visible spectroscopy, differential scanning calorimetry–thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The prepared hydrogels exhibited higher phase volume transition temperature than the NIPAM. The inhibition zone study of the inactivation of bacteria on the developed hydrogels was carried out against Gram negative (Escherichia coli) and Gram positive (Staphylococcus aureus), which revealed that the prepared hydrogels are helpful for the inactivation of these bacteria due to the high stabilization of antibacterial properties of the silver nanoparticles. The developed hydrogels are promising for biomedical applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45739.  相似文献   

4.
pH and temperature responsive nanocomposite hydrogels were synthesized with sodium alginate (NaAlg), N‐isopropylacrylamide (NIPA), and nanoclay. The structure, morphology, thermal behavior, and swelling and deswelling behaviors of the hydrogels were studied. The NaAlgm/PNIPA/Clayn hydrogels revealed a highly porous structure in which the pore sizes decreased and the amount of pores increased with increasing the nanoclay content in the hydrogels. PNIPA retained its own characteristics regardless of the amount of NaAlg and nanoclay. The effect of pH and nanoclay content on the swelling and effect of temperature on the deswelling behavior were investigated. The equilibrium swelling ratios of the nanocomposite hydrogels increased with increasing the pH from 2 to 6. The maximum swelling was attained at pH 6. Deswelling increased with increasing the nanoclay content in the hydrogels. The hydrogels were found to be pH and temperature responsive. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43222.  相似文献   

5.
BACKGROUND: A considerable amount of research has been focused on smart hydrogels that can respond to external environmental stimuli, especially temperature and pH. In this study, fast responsive thermo‐ and pH‐sensitive poly[(N,N‐diethylacrylamide)‐co‐(acrylic acid)] hydrogels were prepared by free radical copolymerization in aqueous solution using poly(ethylene glycol) (PEG) as a pore‐forming agent. RESULTS: Swelling studies showed that the hydrogels produced had both temperature and pH sensitivity. The deswelling kinetics at high temperature demonstrated that the shrinking rates were influenced by the addition of the pore‐forming agent and the amount of acrylic acid in the initial total monomers. The deswelling curves in low‐buffer solutions had two stages. Pulsatile swelling studies indicated that the PEG‐modified hydrogels were superior to the normal ones. These different swelling properties were further confirmed by the results of scanning electron microscopy. CONCLUSION: Such fast responsive thermo‐ and pH‐sensitive hydrogels are expected to be useful in biomedical fields for stimuli‐responsive drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
A series of nanocomposite hydrogels were prepared from acrylic acid (AA), N‐isopropylacrylamide (NIPAAm), and intercalated hydrotalcite (IHT) by photopolymerization. The influence of the intercalating content of 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) in HT on the swelling and mechanical properties for poly(AA‐co‐NIPAAm)/IHT nanocomposite hydrogels was investigated. The results showed that the higher the content of the AMPS‐HT was, the higher the swelling ratio of the gels and the higher the content of the intercalating agent was, the lower swelling ratio. It was also demonstrated that the swelling ratio of the gel was not affected by the counterion in HT. The gel strength and crosslinking density were not enhanced by adding AMPS‐HT into the gel composition, but the maximum effective crosslink density and shear modulus of the nanocomposite hydrogels were increased with an increase of the content of the intercalating agent in HT. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1572–1580, 2005  相似文献   

7.
A novel pH‐ and temperature‐dual responsive hydrogel was synthesized by inverse microemulsion polymerization, using itonic acid (IA) as pH‐responsive monomer, N‐isopropylacrylamide (NPAM) as thermo‐responsive monomer and acrylamide (AM) as the nonionic hydrophilic monomer. Factors affecting water and salt absorption, as well as swellability of the dual responsive hydrogels, such as IA/NPAM mass ratio and crosslinker amount, were investigated. pH‐ and temperature‐sensitivity and dynamic viscoelasticity behaviors of the dual responsive hydrogels were also studied. The dual responsive responsive hydrogels showed suitable water and salt absorbency, remarkable pH‐, and temperature‐sensitivity, adjustable swellability and enhanced viscoelastic behaviors under high stress. Water absorbency and pH‐sensitivity increased while salt absorbency and temperature‐ sensitivity decreased with increasing IA/NIPAM mass ratio. Both water absorbency and salt absorbency increased first with crosslinker amount increased to 0.2 wt %, and then decreased with increasing crosslinker amount. Temperature‐induced shrinkage range of the dual responsive hydrogels was higher and broader than that of the conventional poly(N‐isopropylacrylamide) hydrogel. TEM indicated that the as‐synthesized hydrogel particles were regular and spherical‐like in shape and had the mean particle size of 49nm in the range of 30–78 nm. FTIR indicated the structure of the dual responsive hydrogels. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42139.  相似文献   

8.
Novel electrically conducting composite materials consisting of poly(pyrrole) (PPy) nanoparticles dispersed in a poly(vinyl alcohol)‐g‐poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid‐co‐acrylonitrile) hydrogels were prepared within the polymer matrix by in situ polymerization of pyrrole. The conversion yield of pyrrole into PPy particles was determined gravimetrically while structural confirmation of the synthesized polymer was sought by Fourier Transform Infrared (FTIR) and UV‐visible spectroscopy. The morphology of PPy nanoparticles containing hydrogel matrix was investigated by Scanning Electron Microscopy (SEM) analysis. Electrical conductivity of nanocomposite hydrogels of different compositions was determined by LCR meter while electroactive behavior of nanocomposite hydrogels swollen in electrolyte solutions was investigated by effective bend angle measurements. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

9.
Poly(2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS)/hyaluronic acid (HA) interpenetrating polymer network (IPN) hydrogels have been prepared by using the sequential‐IPN method. The IPN hydrogels exhibited swelling behavior in solutions at various pHs, in NaCl solutions, and under electrical DC stimulation. The IPN hydrogels were highly swollen in water, but lost much of their water capacity when transferred to solutions having a high ionic strength. The IPN hydrogels showed a significant responsive deswelling in an applied electric field. This behavior indicates the potential application of IPN hydrogels as biomaterials. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1731–1736, 2004  相似文献   

10.
Thermo‐responsive poly(N‐isopropylacrylamide) (poly(NIPAAm)) and pH‐responsive poly(N,N′‐diethylaminoethyl methacrylate) (poly(DEAEMA)) polymers were grafted to carboxymethylchitosan (CMC) via radical polymerization to form highly water swellable hydrogels with dual responsive properties. Ratios of CMC, NIPAAm to DEAEMA used in the reactions were finely adjusted such that the thermo and pH responsiveness of the hydrogels was retained. Scanning electron microscopy (SEM) indicated the formation of an internal porous structure for the swollen CMC hydrogels upon incorporation of poly(NIPAAm) and poly(DEAEMA). Effect of temperature and pH changes on water swelling properties of the hydrogels was investigated. It was found that the water swelling of the hydrogels was enhanced when the solution pH was under basic conditions (pH 11) or the temperature was below its lower critical solution temperature (LCST). These responsive properties can be used to regulate releasing rate of an entrapped drug from the hydrogels, a model drug, indomethacin was used to demonstrate the release. These smart and nontoxic CMC‐based hydrogels show great potential for use in controlled drug release applications with controllable on‐off switch properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41505.  相似文献   

11.
A series of novel nanocomposite hydrogels were prepared by a cross‐linking copolymerization method. Structural and morphological characterizations of the nanocomposite hydrogels revealed that a good compatibility exists between poly(acrylamide‐co‐sodium methacrylate) [P(AM‐co‐SMA)] and carboxyl‐functionalized carbon nanotubes (MWNTs–COOH). The P(AM‐co‐SMA)/MWNTs–COOH nanocomposite hydrogels with a suitable MWNTs–COOH loading exhibited better swelling capability, higher pH sensitivity, good reversibility, and repeatability, and rapid response to external pH stimuli, compared with the P(AM‐co‐SMA). The compression mechanical tests revealed that the nanocomposite hydrogel displayed excellent compressive strengths and elastic mechanical properties, with higher ultimate compressive stress, and meanwhile still retain a good recoverable strain in the presence of MWNTs–COOH. These excellent properties may primarily be attributed to effectively dispersing of a suitable MWNTs–COOH loading into the matrix of the polymers and formation of additional hydrogen bonds. The nanocomposite hydrogels were expected to find applications in drug controlled release and issue engineering. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N‐isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25–55°C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using infrared thermography. This is the first report on the use of RF to remotely heat MWCNT‐hydrogel nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
In this study, pH‐ and temperature‐responsive hydrogels based on linear sodium alginate (SA) and crosslinked poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by semi‐interpenetrating network (semi‐IPN) technique. The dually responsive hydrogels were characterized by FTIR, DSC, and SEM, and their temperature‐ and pH‐responsive behaviors were investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these hydrogels underwent volume phase transition at around 33°C irrespective of the pH value of the medium, but their pH sensitivity was evident only below their volume phase transition temperature. Under basic conditions, the swelling ratios of SA/PNIPAAm semi‐IPN hydrogels were greater than that of pure PNIPAAm hydrogel and increased with increasing SA content incorporated into the hydrogels, but the case was inverse under acidic conditions. The pulsatile swelling experiments indicated that the higher the SA content in SA/PNIPAAm semi‐IPN hydrogels, the faster the response rate to both pH and temperature change. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1931–1940, 2005  相似文献   

14.
BACKGROUND: Making (nano)composite structures is one of the efficient approaches for strengthening hydrogels extended in recent years. The present paper deals with the synthesis and properties of novel nanocomposite hydrogels based on 2‐acrylamido‐2‐methylpropane‐1‐sulfonic acid (AMPS). Initially, a bio‐modified clay, chitosan‐intercalated montmorillonite (chitoMMT), was prepared. Then, this was incorporated into the polymerization of AMPS in the presence of a macro‐crosslinker, i.e. poly(ethylene glycol) dimethacrylate, to yield super‐swelling nanocomposite hydrogels. The swelling capacity as well as some structural, rheological and thermomechanical properties of the hydrogels were studied and compared with those of the clay‐free counterpart. RESULTS: ChitoMMT exhibited no toxicity, which was confirmed using cell‐culture testing. A chitoMMT content of ca 6% was found to be the most favourable content of the bio‐modified clay for achieving a product with improved properties (i.e. the highest gel content, the highest gel strength and optimal thermal stability). Based on a dynamic mechanical thermal analysis study, an increased glass transition temperature (98.2 °C) and improved rubbery modulus (up to 238% higher than that of the clay‐free counterpart) were recorded. Thermogravimetric analysis verified that the thermal stability of nanocomposite samples was higher than that of clay‐free samples. CONCLUSION: Owing to the non‐toxicity of the incorporated chitoMMT, the strengthened hydrogels may be considered as potential candidates for bio‐applications. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
Herein, a facile approach for synthesizing mechanically enhanced nanocomposite hydrogels via a dual‐crosslinking process is described. Additional ionic crosslinking using various cations is introduced after an in situ precipitation process for hydroxyapatite immobilization in hyaluronic acid hydrogels (HAc–CaP). Ca2+, Ba2+, and Sr2+ ions exhibit the highest efficiencies in reinforcing the mechanical properties of HAc–CaP hydrogels. In addition, the dual‐crosslinked HAc–CaP hydrogels promote the biological responses of preosteoblast cells, which exhibit highly stretched shapes and greatly enhanced proliferation. Furthermore, the nanocomposite hydrogels achieve enhanced bioactivity by supporting osteogenic differentiation. Thus, enhancement on both the mechanical and biological properties of hyaluronic‐acid‐based nanocomposite hydrogels is achieved through this dual‐crosslinking process, extending the potential application of these materials to hard tissue engineering.  相似文献   

16.
Poly(vinyl alcohol) (PVA) was chosen as a controllable gelator to prepare sodium alginate (SA)‐based physically cross‐linked dual‐responsive hydrogel by three steps. First, polyvinyl acetate (PVAc) was grafted onto SA via radical copolymerization. Then, the copolymer was subsequently converted into SA‐g‐poly(vinyl alcohol) (SAPVA) by alcoholysis reaction. PVA content of SAPVA was tailored by controlling the graft percentage of PVAc, i.e. through varying the amount of vinyl acetate during copolymerization. Finally, SAPVA hydrogels were formed by freezing‐thawing cycles. The structure of the graft copolymers was verified with FTIR spectroscopy. X‐ray diffraction analysis results revealed that the crystallinity of SAPVA hydrogels depended on the PVA content of SAPVA. The swelling test showed that SAPVA hydrogels were pH‐responsive, and the swelling was reversible. SAPVA hydrogels also behaved electric‐responsive. In addition, the pH‐sensitivity of SAPVA hydrogels was able to be controlled with the composition of the hydrogels. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Different from the conventional method of developing stimuli‐sensitive textiles by graft copolymerization of environmental responsive polymers onto the fabric, the coating technique was applied to bond temperature‐sensitive hydrogels with cotton fabric through chemical covalent in our work. A temperature‐sensitive linear copolymer of Ntert‐butylacrylamide (NTBA) and acrylamide (AAm) was prepared in methanol. Then, the cotton fabrics were coated using an aqueous solution of this copolymer containing 1,2,3,4‐butanetertracarboxylic acid as a crosslinker and sodium hypophosphite (SHP) as a catalyst, followed by drying and curing. The surface of the cotton fabrics was bonded on more or less coatings of poly (NTBA‐co‐AAm) hydrogels, as verified by Fourier transform infrared spectroscopy and scanning electron microscopy images. The poly(NTBA‐co‐AAm) hydrogels‐coated fabrics exhibited temperature sensitive, and the temperature interval of the deswelling transition was higher than lower critical solution temperature of linear copolymer solution. The coated fabrics presented good water‐impermeable ability because of the swelling of hydrogels bonded, especially when the add‐on was as high as 14.14%. Environmental scanning electron microscopy images revealed that coating hydrogels swelled and covered on the surface as a barrier to prevent water from penetrating once the coated fabric came into contact with water. The findings demonstrate that the temperature‐sensitive hydrogels can be covalently bonded on the cotton fabrics by coating technique and the coated fabrics have potential on immersion fabrics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
《Polymer Composites》2017,38(6):1135-1143
A series of nanocomposite hydrogels were prepared by a freeze‐thaw process, using polyvinyl alcohol (PVA) as polymer matrix and 0–10 wt% of hydrophilic natural Na‐montmorillonite (Na+‐MMT), free from any modification, as composite aggregates. The effect of nanoclay content and the sonication process on the nanocomposite microstructure and morphology as well as its properties (physical, mechanical, and thermal) were investigated. The microstructure and morphology were investigated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and X‐ray diffraction technique. The thermal stability and mechanical properties of nanocomposite hydrogels were examined using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis; moreover hardness and water vapor transmission rate measurements. It was concluded that the microstructure, morphology, physical (thermal) and mechanical properties of nanocomposite hydrogels have been modified followed by addition of nanoclay aggregates. The results showed that Na+‐MMT may act as a co‐crosslinker. Based on the results obtained, the nanocomposite hydrogel PVA/Na+‐MMT synthesized by a freeze‐thaw process, appeared to be a good candidate for biomedical applications. POLYM. COMPOS., 38:1135–1143, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
Novel pH‐responsive polyglycerol (PG)‐based hydrogels were successfully synthesized through the reaction of epichlorohydrin with L ‐lactic acid (LLA) in the presence of sodium hydroxide (NaOH), and cetyltrimethylammonium bromide as a phase transfer catalyst at room temperature, followed by hydrolysis, polymerization, and crosslinking reactions. The resultant gel was characterized by carbon nuclear magnetic resonance spectroscopy, X‐ray photoelectron spectroscopy, and Fourier transform infrared measurement, and it was found that incorporated LLA was bound to PG network as a pendant acidic substituent by the hydroxyl group of LLA (PGL gel). The PGL hydrogels with different LLA contents and equilibrium swelling ratios (ESRs) were prepared by changing the feed ratios of materials. The results determined by chemical titration showed that under the applied conditions the efficiency of introducing the carboxyl group into PG network was about 86% and the amount of LLA in the hydrogel reached to about 17 wt %. The swelling behavior of the hydrogels in different environmental mediums was investigated, and the results showed that the hydrogels are pH‐, ionic strength‐, and cationic charge‐responsive. The hydrogels also have the reversible swelling/deswelling properties. These pH‐responsive PG‐based hydrogels will have potential applications in biomedical and related areas. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Thermo‐responsive membranes were prepared by fabricating cross‐linked poly(N‐isopropylacrylamide) (PNIPAM) hydrogels inside the pores of porous Nylon‐6 (N6) membranes by the free radical polymerization method. SEM micrographs of the prepared membranes showed that PNIPAM hydrogels were filled uniformly throughout the entire thickness of the porous N6 membranes. Both PNIPAM‐filled N6 membranes prepared at 60 °C and at 25 °C exhibited significant reversible and reproducible thermo‐responsive diffusional permeability. When the environmental temperature remained constant, the diffusional coefficient of vitamin B12 (VB12) across the PNIPAM‐filled N6 membrane prepared at 25 °C was ca. twice the value of that prepared at 60 °C due to different filling yields. The thermo‐response factor of the membrane prepared at 25 °C was higher than that prepared at 60 °C. The 3‐dimensional interpenetrating network structure of the cross‐linked PNIPAM hydrogels inside the N6 porous substrates could effectively ensure a repeatable thermo‐responsive permeation performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号