首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most efficient methods to reduce the dropping and blocking probabilities of the secondary users (SUs) in cognitive radio networks is channel sub-banding strategy. This means that when all the channels are occupied by the primary and secondary users, then the SUs’ channels can be divided into two sub-bands, and two SUs can use a sub-band, simultaneously. In this paper, we propose an opportunistic spectrum sharing system in cognitive radio networks in which, the channel sub-banding strategy is implemented. Furthermore, we describe the problem of channel sub-banding considering the spectrum sensing errors such as false alarm and miss-detection events for both initial and on-going SUs’ calls. Due to unreliable spectrum sensing by the SUs and subsequently possible interference with the primary users, we assume that both primary and secondary users may lose the channel due to the collision. The proposed model is analyzed by a two-dimensional Markov chain model and for performance evaluation, metrics such as blocking and dropping probabilities and channel utilization are derived. Numerical and simulation results show the accuracy of the proposed model which can be used in the evaluation of future cognitive radio networks’ performance.  相似文献   

2.
在认知无线电(CR)中,频谱感知是实现动态频谱接入的关键技术之一。为适当保护主用户并最大化次级用户的性能,目前大部分相关工作均是用虚报概率和漏检概率作为感知度量来确定最佳感知参数的。但这种度量是用主次用户的碰撞概率来衡量次级用户对主用户的影响的,没有考虑干扰强度的影响,仅适合同构频谱环境;在不同位置次级用户有不同接入机会的异构频谱环境中,并不能最大化频谱利用率。为此,该文首先定义了吞吐量降,并提出在异构频谱环境下采用吞吐量降作为一种新的感知度量。吞吐量降是指由于次级用户占用授权频谱而导致主用户吞吐量下降的百分比。在衡量次级用户对主用户的影响时,它综合了主次用户的碰撞概率和干扰强度两个因素;其次,研究了以吞吐量降为约束的次级用户吞吐量优化问题。最后,数值仿真证实了该方案比目前几种传统方案的频谱利用率显著提高。  相似文献   

3.
对当前备受关注的认知无线电多点协作频谱感知技术进行了系统归纳与总结.对频谱感知基本问题进行研究,指出了低信噪比情况下单节点检测存在的局限性;接着着重对基于能量检测的多点协作检测技术和多种数据合并算法等最新的研究情况进行了介绍和评价;最后提出了一种具有自适应优化功能的协作频谱感知机制,对控制信道和检测判决信道采用两种控制方式,采用较为稳健的拓扑控制方式,提高了检测网络的稳定性和运作效率.  相似文献   

4.
In this paper, the performance of cognitive radio (CR) code division multiple access (CDMA) systems is analyzed. More precisely, CR users belong to a cognitive radio network (CRN), which coexists with a primary radio network (PRN). Both CRN and PRN are CDMA‐based, with colocated base stations. Soft hand off and power control are considered in both the CRN and the PRN. Upon the development of an accurate simulator for a representative three‐cell cellular scenario, we evaluate the performance of the proposed CR system in terms of outage probability, blocking probability and average data rate of secondary users. Three different spectrum sensing techniques are. Two new schemes, based on interference limit, are proposed and compared with an existing adaptive spectrum sensing scheme. Spectrum activity measurements and spectrum sharing decisions have been considered for evaluating the performance of the three schemes. The paper proposes a new CR‐CDMA networking model and a simulation testbed for evaluating performances of secondary users and primary users in terms of outage, blocking, BER and average data rate in the presence of soft hand‐off and power control. For comparison purposes, the analysis in the absence of spectrum sensing is also investigated.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We propose decentralized cognitive MAC protocols that allow secondary users to independently search for spectrum opportunities without a central coordinator or a dedicated communication channel. Recognizing hardware and energy constraints, we assume that a secondary user may not be able to perform full-spectrum sensing or may not be willing to monitor the spectrum when it has no data to transmit. We develop an analytical framework for opportunistic spectrum access based on the theory of partially observable Markov decision process (POMDP). This decision-theoretic approach integrates the design of spectrum access protocols at the MAC layer with spectrum sensing at the physical layer and traffic statistics determined by the application layer of the primary network. It also allows easy incorporation of spectrum sensing error and constraint on the probability of colliding with the primary users. Under this POMDP framework, we propose cognitive MAC protocols that optimize the performance of secondary users while limiting the interference perceived by primary users. A suboptimal strategy with reduced complexity yet comparable performance is developed. Without additional control message exchange between the secondary transmitter and receiver, the proposed decentralized protocols ensure synchronous hopping in the spectrum between the transmitter and the receiver in the presence of collisions and spectrum sensing errors  相似文献   

6.
基于OMP算法的宽带频谱感知   总被引:1,自引:0,他引:1  
频谱感知是认知无线电的一项关键技术,其能够检测出未被主用户占用的频谱空穴供次用户接入使用,提高频谱利用率.宽带频谱感知要求对数GHz 的带宽进行检测,过高的采样速率、大的数据量对现有的硬件设备提出了巨大的挑战.本文利用宽带频谱的稀疏性提出一种基于OMP算法的宽带频谱感知方法.该方法利用MWC采样实现对宽带模拟信号直接压缩采样;利用自相关矩阵对称分解特性和主用户信号独立性,得到有限维压缩采样信号模型,利用AIC/MDL准则估计稀疏度作为OMP算法迭代停止的条件,大大减少了算法复杂度;该方法不需要重构接收信号的PSD,直接在时域根据低速率采样信号,检测被占用信道.仿真结果表明,当带内信噪比大于9dB时,频谱检测概率高于90%.  相似文献   

7.
In cognitive radio networks, the secondary users take chances to access the spectrum without causing interference to the primary users so that the spectrum access is dynamic and somewhat opportunistic. Therefore, spectrum sensing is of significant importance. In this paper, we propose a novel time-domain combining cooperative spectrum sensing framework, in which the time consumed by reporting for one secondary user is also utilized for other secondary users’ sensing. We focus on the optimal sensing settings of the proposed sensing scheme to maximize the secondary users’ throughput and minimize the average sensing error probability under the constraint that the primary users are sufficiently protected. Some simple algorithms are also derived to calculate the optimal solutions. Simulation results show that fundamental improvement of the achievable throughput and sensing performance can be obtained by optimal sensing settings. In addition, our proposed scheme outperforms the general frame structure on either achievable throughput or the performance of average sensing error probability.  相似文献   

8.
为提高认知无线电网络中次用户节点的能量有效性,该文基于连续时间马尔科夫理论对次用户的频谱感知和接入过程进行联合建模,对影响次用户传输能效的主要因素进行了分析,提出了一种基于跨层设计的能量有效优化算法。该算法可有效减小主用户非时隙返回信道对次用户能量有效性的影响,并通过联合优化感知时间和接入概率,使次用户在感知性能和传输能效间实现了有效折衷。仿真结果表明,本文算法相对于仅考虑频谱感知或接入策略的单层优化算法,可使次用户的能量有效性得到较大提高。   相似文献   

9.
在碰撞约束和非理想信道信息下,研究认知多址接入信道中多个次用户接入主用户频谱的有效吞吐量问题。在机会频谱接入方式(OSA)下,定义有效吞吐量并作为次用户的性能指标。考虑信道质量信息,在信道质量分布参数未知的情况下采用有限的信道样本对参数进行估计,并对非理想感知下次用户的性能进行分析。通过仿真实验,分别讨论了信道质量门限与碰撞概率及次用户性能之间的关系,对比了理想感知和非理想感知下次用户的性能,并与其他算法进行对比,验证了本文接入策略的有效性。  相似文献   

10.
Opportunistic spectrum access (OSA) that allows secondary users to independently search for and exploit instantaneous spectrum availability is considered. The design objective is to maximize the throughput of a secondary user while limiting the probability of colliding with primary users. Integrated in the joint design are three basic components: a spectrum sensor that identifies spectrum opportunities, a sensing strategy that determines which channels in the spectrum to sense, and an access strategy that decides whether to access based on potentially erroneous sensing outcomes. This joint design is formulated as a constrained partially observable Markov decision process (POMDP), and a separation principle is established. The separation principle reveals the optimality of myopic policies for the design of the spectrum sensor and the access strategy, leading to closed-form optimal solutions. Furthermore, it decouples the design of the sensing strategy from that of the spectrum sensor and the access strategy, and reduces the constrained POMDP to an unconstrained one. Numerical examples are provided to study the tradeoff between sensing time and transmission time, the interaction between the physical layer spectrum sensor and the MAC layer sensing and access strategies, and the robustness of the ensuing design to model mismatch.  相似文献   

11.
频谱感知为未获得频谱授权的次用户提供频谱空穴,并监测主用户以防止对其造成干扰。然而频谱感知会带来时间和能量消耗,采用准确、主动的频谱预测技术可以改善频谱感知过程。文中通过研究感知门限对平均感知时间和频谱利用率的影响,提出了基于感知门限的频谱预测-感知机制,并利用频谱预测结果按照空闲概率从大到小的顺序进行感知。仿真结果表明,文中所提出的机制能够减少感知时间并提高频谱利用率。  相似文献   

12.
13.
认知无线电网络的MAC层关键技术   总被引:2,自引:0,他引:2  
认知无线电作为一种智能的频谱共享技术,已成为无线通信领域的研究热点。为达到在不干扰授权用户的条件下有效地实现机会式频谱利用,认知无线电网络的媒体接入控制(MAC)层不仅需要提供传统的服务,还要求能支持一套全新的功能。频谱检测管理通过对检测模式的选取、检测周期及检测时长的设置、检测信道的选取和检测静默期的设置等实现检测策略和参数的选取及优化。接入控制主要采用与授权用户协调接入和透明接入两种方式避免与授权用户的接入产生碰撞。动态频谱分配针对二进制干扰模型和累积干扰模型进行不确定频谱资源的优化分配。安全机制通过增加MAC帧的认证和保密以防御MAC层的安全攻击。跨层设计结合物理层和网络层、传输层等上层信息设计和实现全局优化的MAC层技术。  相似文献   

14.
This paper investigates the capacity and energy efficiency of spectrum sharing systems with opportunistic user selection where a secondary network utilizes spectrum bands licensed to a primary network under interference regulation. In spectrum sharing systems, secondary users consume a fraction of their resources in sensing the channels to the primary users to comply with the interference constraints. Although more resources for sensing improve reliability and performance, the throughput loss due to time overhead and energy loss due to power overhead should be properly incorporated in performance evaluation. In this context, we define and derive a new metric ? average capacity normalized by the total energy consumption ? reflecting time and power overhead for spectrum sensing. Based on the developed framework, the optimal normalizedcapacity is investigated. We also propose a simple and practical suboptimal best-n scheme motivated by the infeasibility and high computational complexity of the optimal strategy, where n denotes the number of sensing secondary users. Our analytical and simulation results show that the proposed best-1 scheme is an energy-efficient technique with near optimality in terms of the capacity normalized by the energy consumption.  相似文献   

15.
Dynamic Spectrum Access with QoS and Interference Temperature Constraints   总被引:5,自引:0,他引:5  
Spectrum is one of the most precious radio resources. With the increasing demand for wireless communication, efficiently using the spectrum resource has become an essential issue. With the Federal Communications Commission's (FCC) spectrum policy reform, secondary spectrum sharing has gained increasing interest. One of the policy reforms introduces the concept of an interference temperature - the total allowable interference in a spectral band. This means that secondary users can use different transmit powers as long as the sum of these power is less than the interference threshold. In this paper, we study two problems in secondary spectrum access with minimum signal to interference noise ratio (quality of service (QoS)) guarantee under an interference temperature constraint. First, when all the secondary links can be supported, a nonlinear optimization problem with the objective to maximize the total transmitting rate of the secondary users is formulated. The nonlinear optimization is solved efficiently using geometric programming techniques. The second problem we address is, when not all the secondary links can be supported with their QoS requirement, it is desirable to have the spectrum access opportunity proportional to the user priority if they belong to different priority classes. In this context, we formulate an operator problem which takes the priority issues into consideration. To solve this problem, first, we propose a centralized reduced complexity search algorithm to find the optimal solution. Then, in order to solve this problem distributively, we define a secondary spectrum sharing potential game. The Nash equilibria of this potential game are investigated. The efficiency of the Nash equilibria solutions are characterized. It is shown that distributed sequential play and an algorithm based on stochastic learning attain the equilibrium solutions. Finally, the performances are examined through simulations  相似文献   

16.
Multichannel cooperative sensing (MCS) is an effective method for dynamic spectrum access in cognitive radio networks. In contrast to most existing work on MCS that considered secondary users with homogeneous sensing ability, this paper studies the MCS problem for secondary users with heterogeneous sensing ability in terms of sensing accuracy. We further take into account different parameters of primary channels such as bandwidth, probability of being idle in each sensing period, and frequency selective fading at the sensing receiver. The MCS problem is formulated as a weapon target assignment problem, where more sensing resources are assigned to channels that are more valuable. This weapon target assignment problem is transformed to an integer generalized network flow problem with convex flow costs to obtain the lower bound solution, and then solved by the branch and bound algorithm with this bound to yield the exact scheme. To reduce computational complexity, a heuristic scheme is also proposed, which has approximate performance compared with the exact scheme. Finally, extensive simulation results for different scenarios illustrate the performance improvements of the proposed schemes over the existing scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Dynamic spectrum access has been proposed to address the spectrum scarcity. Based on this access mode, secondary users are allowed to opportunistically operate when primary users are absent. Secondary Users are, however, required to relinquish the spectrum upon return of the incumbent spectrum holder. Although it improves spectrum utility, opportunistic spectrum access limits secondary users’ access to exogenous spectrum holes vacated by primary users. We argue that spectrum holes should be endogenous, enabled by incentives to incumbent users to increase spectrum availability, while mitigating risk. To this end, we take a different perspective on dynamic spectrum sharing and propose a coopetive framework, whereby primary and secondary users engage in a cooperative, yet competitive, auction-driven spectrum sharing to enhance spectrum usage. In this framework, the primary users’spectrum is organized in three bands, namely exclusive usage, usage right and management right bands. Based on this structure, spectrum is traded as financial options to increase trading flexibility and capture the value primary and secondary users attach to spectrum access and usage. Spectrum trading between primary and secondary users is formalized as a utility maximization problem. Approximate solutions to this problem are derived and their performance is analyzed. The results show that spectrum trading, which combines revocable and exclusive leasing, provides higher utilities for both primary and secondary users.  相似文献   

18.
针对卫星认知无线网络频谱感知不确定性较大导致传统频谱接入机制效率降低的问题,该文提出一种基于动态多频谱感知的信道接入优化策略。认知LEO卫星根据频谱检测概率与授权用户干扰门限之间的关系,实时调整不同频谱感知结果下的信道接入概率。在此基础上以系统吞吐量最大化为目标,设计了一种基于频谱检测概率和虚警概率联合优化的判决门限选取策略,并推导了最佳感知频谱数量。仿真结果表明,认知用户能够在不大于授权用户最大干扰门限的前提下,根据授权信道空闲状态动态选择最佳频谱感知策略,且在检测信号信噪比较低时以更加积极的方式接入授权频谱,降低了频谱感知不确定性对信道接入效率的影响,提高了认知系统吞吐量。  相似文献   

19.
Spectrum sensing in cognitive radio networks imposes some security threats to the secondary users (SUs) such as primary user emulation attack (PUEA). In the present paper, throughput of an SU is studied for cognitive radio network under PUEA where SU spectrum access is hybrid, ie, either in overlay mode or in underlay mode. A novel analytical expression for throughput of an SU in presence of PUEA is developed. Impact of several parameters such as sensing time, attacker strength, attacker's presence probabilities, maximum allowable SU transmit power, and tolerable interference limit at primary user on the throughput of an SU is investigated. The throughput performance under PUEA and without PUEA is compared.  相似文献   

20.
Spectrum sharing can be considered as an alternative solution to overcome spectrum limitation. Cognitive radio is the most important spectrum sharing technique in wireless communication system, which aims to enhance the utilization of radio frequency spectrum. Identification of spectrum environments like location of both licensed and unlicensed users has been considered in cognitive radio technology. In this paper, cognitive controller is an emergency repairing unit, which is introduced to maximize the number of connected users in an emergency situation. The analysis shows that the sensing efficiency of fixed sensing controller to identify users is limited to its sensing region. A hybrid technique with overlay and underlay accessing to perform data offloading in emergency situations and to connect the disconnected users is proposed to enhance the location sensing efficiency of the controller. A cognitive user node located at the interference region of controller experiences hidden node problem and causes interference to other users. In order to identify such users, an adaptive and cooperative sensing‐based controller is proposed, and efficiency of which is compared with the efficiency of fixed sensing controller. Theoretical and simulation analysis explores that the sensing capacity of adaptive sensing controller provides 42% of higher efficiency than the fixed sensing method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号