首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
超声波-化学共沉淀法制备纳米ITO粉   总被引:1,自引:0,他引:1  
以In、Sn硫酸盐为原料,采用超声波与化学共沉淀相结合的方法制备纳米ITO粉末,用TEM,sEM.XRD,BET等现代分析测试手段对制备的粉末进行表征.在反应温度为60-75℃,In3 浓度<160g/L,氨水浓度<400g/L,终点pH为6.8~8的条件下.得到的纳米ITO粉末颗粒呈球状,团聚少、分散性好,In2O3:snO2(质量)=9:1.平均粒径<50nm,比表面积>15m2/g.  相似文献   

2.
以粗铜精炼富钴废渣为原料,通过硫酸氧化浸出,得到浸出液,然后采用草酸铵沉淀-固态盐热分解法合成Co3O4粉体。考察了草酸铵用量、沉淀反应温度、沉淀终点pH值等对钴沉淀率的影响,探索了草酸钴分解得到Co3O4的温度条件。采用X射线衍射对草酸钴和Co3O4粉体进行了分析。实验结果表明:沉钴反应温度40℃,草酸铵用量为理论量的1.1倍,反应终点pH值为1.8,钴的沉淀率可达99.7%,所得草酸钴含钴量达到30.2%。在草酸钴热分解为Co3O4的温度范围内(450~750℃,保温3 h),随着分解温度的升高,分解所得Co3O4逐步向活性Co3O4转化,晶形逐步变好。  相似文献   

3.
以铝土矿酸性浸出液为原料,通过化学沉淀、碱溶、碳分、煅烧等得到氧化铁和氧化铝粉体。考察了沉淀、碱溶、碳分过程中溶液终点pH值、反应温度、反应时间等参数的影响,得到优化工艺条件。结果表明,在终点pH值5.0、反应温度80℃、沉淀时间50min条件下进行沉淀,铝铁的沉淀率均达99%;在溶液终点pH值14、碱溶温度80℃、碱溶时间30min条件下,铝的溶出率可达99.42%,铁的去除率可达99.63%;在溶液终点pH值9.0、碳分温度40℃、CO2流速选择6mL/min条件下,铝的沉淀率可达98.69%。  相似文献   

4.
以红土镍矿硫酸焙烧熟料溶出液为原料,(NH_4)_2CO_3为碱式调节剂,采用湿法制备黄铵铁矾。研究和分析了反应温度、反应时间和pH值对溶出液中黄铵铁矾生成率的影响,并利用X射线衍射(XRD)、扫描电子电微镜(SEM)和化学成分分析等手段对制备产物进行了表征。研究发现,在反应温度95℃、反应时间4 h、终点pH值是2.5的条件下,黄铵铁矾生成率大于98%,实现了铁的有效分离,得到花球状黄铵铁矾粉体。  相似文献   

5.
研究用金属铟(纯度99.99%)和锡酸钠为原料制备In2O3·Sn2(ITO)复合粉末的工艺过程。在In3 浓度150g/L,(NH4)CO3浓度200g/L,沉淀温度323-343K,滴速1drop/s,pH=6-7,强力搅拌,烘干温度353-373K,焙烧温度973-1173K等适宜条件下制备出ITO超细复合粉末。产品平均粒径0.05μm左右,颗粒为球形,分布较均匀,流动性好,适于制备高密度的ITO靶材。  相似文献   

6.
液相共沉淀法制备超细In2O3·SnO2复合粉末   总被引:5,自引:0,他引:5  
研究用金属铟(纯度99.99%)和锡酸钠为原料制备In2O3·SnO2(ITO)复合粉末的工艺过程.在In3+浓度150g/L,(NH4)CO3浓度200g/L,沉淀温度323~343K,滴速1drop/s,pH=6~7,强力搅拌,烘干温度353~373K,焙烧温度973~1173K等适宜条件下制备出ITO超细复合粉末.产品平均粒径0.05μg左右,颗粒为球形,分布较均匀,流动性好,适于制备高密度的ITO靶材.  相似文献   

7.
张梅英  张松  简春晖 《矿冶工程》2022,42(3):121-124
采用沉淀法, 以精铟、硝酸、氨水为原料, 纯水为底液, 制备出了纯度、粒度和分散性良好的氢氧化铟沉淀物, 该沉淀物经过喷雾干燥、煅烧得到符合代汞缓蚀剂用粉末状氧化铟。沉淀法制备氧化铟粉末的适宜工艺为: 反应温度85 ℃, 硝酸铟溶液中铟离子浓度0.8 mol/L, 硝酸铟溶液滴加速度400 mL/h, 机械搅拌转速900 r/min, 煅烧温度850 ℃, 煅烧时间2 h。此工艺条件下所得氧化铟样品纯度高于99.99%, 粒度分布均匀, 各杂质含量符合国家标准, 满足电池代汞缓蚀剂的使用要求。  相似文献   

8.
纳米铁酸锌的制备研究   总被引:7,自引:1,他引:6  
田庆华  黄凯  郭学益 《矿冶工程》2005,25(2):46-48,52
采用“共沉淀-干燥-热分解”工艺路线合成了纳米铁酸锌。针对Fe(Ⅲ).Zn(Ⅱ)-NH3-CO3^2--H2O体系,进行了热力学平衡分析,绘制了基本的热力学曲线,从理论上明确了共沉淀的最佳pH值。根据热力学分析结果,设计了快速并流沉淀工艺合成铁酸锌前驱体粒子。针对纳米粒子容易团聚的特点,采用加分散剂、共沸蒸馏等手段有效地防止了硬团聚的形成。通过对沉淀前驱体进行热重-差热分析,确定合适的热分解温度为450℃,在此温度下保温煅烧2h,经X射线衍射分析确定煅烧产物为结晶性能良好的铁酸锌,物相纯净,成分单一。扫描电镜分析表明,所得铁酸锌粉末粒度分布较为均匀、分散性较好,粉体粒径为20-50nm。  相似文献   

9.
化学共沉淀-封闭循环氢还原法制备纳米Mo-CU复合粉   总被引:6,自引:0,他引:6  
李在元  翟玉春  田彦文 《有色金属》2004,56(3):15-17,44
以 (NH4 ) 6 Mo7O2 4 ·2H2 O和CuSO4 ·5H2 O(Mo∶Cu =70∶3 0 )为原料 ,采用化学共沉淀法制备Mo Cu化合物粉末 ,再用封闭循环氢还原法制备纳米Mo Cu复合粉。结果表明 ,化学共沉淀反应最适宜条件为反应温度 5 0± 5℃ ,pH 5 1± 0 1,陈化时间9± 1h。在此条件下得到平均粒径为 1 2 1μm的Mo Cu化合物粉末。封闭循环氢还原温度为 65 0℃ ,得到的Mo Cu复合粉粒径小于 10 0nm。  相似文献   

10.
共沉淀法制备掺锑氧化锡粉体及其性能   总被引:2,自引:0,他引:2  
以SnCl4·5H2O和SbCl3为原料,采用共沉淀法制备出掺锑氧化锡纳米粉体,用X射线衍射、透射电镜、热重-差示扫描量热分析(TG-DSC)对粉体进行表征.结果表明,粉体晶粒中没有明显的择优取向,其(110),(101)和(211)面峰较强.Sb的掺人没有产生新的相,Sb取代氧化锡晶格中的Sn,保持了良好的四方相SnO2特征.粉体粒子呈单分散状态且为球形或类球型,粒径在10~15nm的范围内.可见光区的透光率超过90%.ATO纳米粉体在液体中分散很好,可稳定存放10月以上.  相似文献   

11.
用化学共沉淀法制得ITO粉体,通过剪切分散法制备ITO浆料,采用XRD、TEM和SEM等对粉体、浆料进行表征与分析,研究工艺参数对浆料稳定性的影响。结果表明,ITO粉体晶体呈立方铁锰矿型结构,平均晶粒尺寸分布在20nm左右,由此粉体制取无水乙醇浆料的最佳工艺条件是pH=3左右,剪切时间为30h,剪切速度为6000r/min,分散剂益通X-100用量为0.12mL/g-粉体。  相似文献   

12.
硫化沉淀法分离ITO废靶浸出液中铟锡的研究   总被引:1,自引:0,他引:1  
铟锡复合氧化物(ITO, Indium and Tin Oxide)膜是铟的主要应用领域。在其制备工艺中, 产出大量的ITO废靶需回收处理。研究了硫化沉淀法分离ITO废靶硫酸浸出液中铟、锡的工艺。平衡计算证明了硫化沉淀分离铟、锡的可行性。试验研究了温度、酸度及反应时间对分离过程的影响, 正交试验得出最佳工艺条件:温度323 K,反应时间20 min,溶液起始酸度100 g H2SO4/L。在此条件下, 除锡率可达100%,铟在渣中的损失率仅为0.47%。  相似文献   

13.
用喷雾燃烧法制备ITO纳米级粉末的研究   总被引:12,自引:1,他引:11  
将金属铟和锡先配制成合金,然后使In-Sn合金熔体过热,通过气雾喷粉工艺,由高压预热氧气使熔体雾化成微细的金属雾滴,并随即在高温反应室中进行直接地氧化燃烧而生成ITO纳米级复合的氧化物粉体,其粒度≤30mm,制备1kg的纳米级金属氧化物粉末仅仅需要的50s,并且生产过程无任何污染。  相似文献   

14.
廖红卫 《矿冶工程》2006,26(2):64-67
采用共沉淀法制备了立方结构氢氧化铟(In(OH)3)和四方结构氧化铟氢氧化物(InOOH)2种前驱体。利用X射线衍射、热重和差热分析以及等温热处理, 对立方结构In(OH)3和四方结构InOOH向萤石型结构铟锡氧化物(ITO)固溶体以及刚玉型结构ITO固溶体的相演变规律进行了系统的研究。立方结构In(OH)3向萤石型结构ITO固溶体的转变起始于150 ℃, 在300 ℃左右转变完全并且表现为一种吸热行为。四方结构InOOH向刚玉型结构ITO固溶体转变起始于220 ℃并且终止于430 ℃。此外, 四方结构InOOH向刚玉型结构ITO固溶体的转变包含2个子过程, 一个表现为吸热行为的InOOH脱水过程, 另一个表现为强烈放热行为的InOOH脱水产物向刚玉型结构ITO固溶体的转变过程。刚玉型结构ITO固溶体在空气中处于亚稳态, 并且在加热的条件下可以转变为萤石型结构ITO固溶体。刚玉型结构ITO固溶体向萤石型结构ITO固溶体的转变起始于578 ℃, 在800 ℃以前转变终止并且表现为一种弱吸热行为。  相似文献   

15.
纳米ITO 粉体的制备及其性能表征   总被引:7,自引:0,他引:7  
介绍了以In(NO3)3 、SnCl4·5H2O 和尿素为原料、采用均相共沉淀法在一定的条件下制备纳米级ITO 粉体的实验过程, 并对产品的结构性能进行了表征。结果表明:所得的ITO 粉体平均粒径约为80 nm、分散性好、呈单一相。  相似文献   

16.
锌冶炼铜烟灰中铟氧化浸出研究   总被引:2,自引:2,他引:0  
以锌冶炼过程中的铜烟灰为原料,研究了硫酸浸出含铟铜烟灰过程中硫酸浓度、硫酸用量、浸出温度、浸出时间、氧化剂高锰酸钾用量等因素对铟浸出效果的影响。结果表明,当硫酸浓度300 g/L、液固比6 mL/g、反应温度90 ℃、反应时间5 h、高锰酸钾添加量0.3%时,铜烟灰中铟浸出率为65.73%。  相似文献   

17.
转炉烟灰高效浸出铟的工艺研究   总被引:1,自引:0,他引:1  
以某公司复杂含铟转炉烟灰为原料, 采用氧化酸浸工艺浸出其中铟, 考察了硫酸酸度、液固比、浸出温度、反应时间、双氧水添加量等因素对铟浸出效果的影响。结果表明, 在初始硫酸浓度3.0 mol/L、液固比6∶1、浸出温度90 ℃、浸出时间4 h、氧化剂H2O2加入量0.8 mL/g条件下进行氧化酸浸, 铟浸出率达到94%以上, 实现了铟的高效浸出。  相似文献   

18.
以某公司复杂含铟烟尘为原料, 分别研究了氧化酸浸和硫酸化焙烧-水浸两种浸出铟工艺。氧化酸浸工艺主要考察了初始硫酸酸度、液固比、浸出温度、反应时间、氧化剂添加量等因素对铟浸出效果的影响; 硫酸化焙烧-水浸工艺主要考察了硫酸用量、焙烧温度、焙烧时间等因素对铟浸出效果的影响。实验结果表明, 在初始硫酸浓度6.0 mol/L, 液固比6∶1, 浸出温度90 ℃, 浸出时间3 h, 氧化剂H2O2添加量为12%条件下进行氧化酸浸, 铟浸出率由常规酸浸的46.5%提高到70%; 在硫酸用量1.0 mL/g, 焙烧温度300 ℃, 焙烧时间2 h条件下进行硫酸化焙烧-水浸, 铟浸出率达到92%, 实现了铟的高效浸出。  相似文献   

19.
以辽宁海城某低品位菱镁矿为原料,在不同温度和时间条件下进行焙烧,获得高活性轻烧粉。对轻烧粉进行磨矿、筛分和不同种类铵盐浸出试验。结果表明:在浸出反应过程中,NH4+浓度是影响浸出效率的主导因素。NH4+浓度为7.0 mol/L,浸出反应温度75℃,浸出反应1.5 h时,浸出率最高达到83.1%。相同条件下(NH4)2SO4溶液的浸出效率高于NH4Cl。  相似文献   

20.
以废铝基/钯石油催化剂经钠化焙烧-碱性浸出的废液为对象, 研究了偏铝酸钠CO2中和法在不同制备条件下对拟薄水铝石产品性能及微观结构的影响。结果表明:反应终点pH和陈化温度决定着拟薄水铝石的颗粒形貌, 反应终点pH、陈化温度和陈化时间共同决定着拟薄水铝石颗粒的大小。在反应终点pH=10.5、陈化温度90℃、陈化时间4 h的条件下可以得到比表面积达到282 m2/g、胶溶指数达到96.2%的纯净无杂晶的拟薄水铝石产品。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号