首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
A method is described for preparing hydroxyapatite strengthened with a glass phase. The properties of the composites obtained containing both biological and synthetic hydroxyapatite are studied. Characteristics of the test materials such as pycnometric density, volumetric porosity, biological solubility, and mechanical strength are determined.  相似文献   

2.
Systematic research has been undertaken on the effects of single and combined additions of vanadium and silicon on the mechanical properties of pearlitic steels being developed for wire rod production. Mechanical test results demonstrate that the alloy additions are beneficial to the mechanical properties of the steels, especially the tensile strength. Silicon strengthens pearlite mainly by solid-solution strengthening of the ferrite phase. Vanadium increases the strength of pearlite mainly by precipitation strengthening of the pearlitic ferrite. When added separately, these elements produce relatively greater strengthening at higher transformation temperatures. When added in combination the behavior is different, and substantial strength increments are produced at all transformation temperatures studied (550 °C to 650 °C). The addition of silicon and vanadium to very-high-carbon steels (>0.8 wt pct C) also suppresses the formation of a network of continuous grain-boundary cementite, so that these hypereutectoid materials have high strength coupled with adequate ductility for cold drawing. A wire-drawing trial showed that total drawing reductions in area of 90 pct could be obtained, leading to final tensile strengths of up to 2540 MPa in 3.3-mm-diameter wires.  相似文献   

3.
The present article focuses on the high-temperature mechanical properties of the magnesium alloy AZ91. The addition of rare-earth (RE) elements up to 2 wt pct improves both yield and tensile strengths at 140 °C by replacing the Mg17Al12 phase with RE-containing intermetallic compounds. This intermetallic phase is thermally and metallurgically stable and is expected to boost the grain-boundary strengthening. It also increases the resistance of grain boundaries to flow at high temperatures. Further increases of RE additions reduce strength and ductility due to growth of the Al11RE3 brittle phase, which has sharp edges. Still, at a 3 wt pct RE addition, the strength of the alloy at high temperatures is more than that of AZ91.  相似文献   

4.
The combination of self-setting and biocompatibility makes calcium phosphate cements potentially useful materials for a variety of dental applications. The objective of this study was to investigate the setting and hardening mechanisms of a cement-type reaction leading to the formation of calcium-deficient hydroxyapatite at low temperature. Reactants used were alpha-tricalcium phosphate containing 17 wt% beta-tricalcium phosphate, and 2 wt% of precipitated hydroxyapatite as solid phase and an aqueous solution 2.5 wt% of disodium hydrogen phosphate as liquid phase. The transformation of the mixture was stopped at selected times by a freeze-drying techniques, so that the cement properties at various stages could be studied by means of x-ray diffraction, infrared spectroscopy, and scanning electron microscopy. Also, the compressive strength of the cement was measured as a function of time. The results showed that: (1) the cement setting was the result of the alpha-tricalcium phosphate hydrolysis, giving as a product calcium-deficient hydroxyapatite, while beta-tricalcium phosphate did not participate in the reaction; (2) the extent of conversion of alpha-TCP was nearly 80% after 24 hr; (3) both the extent of conversion and the compressive strength increased initially linearly with time, subsequently reaching a saturation level, with a strong correlation observed between them, indicating that the microstructural changes taking place as the setting reaction proceeded were responsible for the mechanical behavior of the cement; and (4) the microstructure of the set cement consisted of clusters of big plates with radial or parallel orientations in a matrix of small plate-like crystals.  相似文献   

5.
为解决多孔透气材料力学强度与透气性能两者之间的矛盾, 以纯铝酸钙水泥为钙源, 在刚玉质多孔材料中原位生成六铝酸钙相, 研究了六铝酸钙生成量对多孔材料显微结构、物相组成及物理性能的影响。结果表明: 在1700℃保温3 h处理后, 添加纯铝酸钙水泥的试样中均有板状片六铝酸钙生成。当纯铝酸钙水泥添加量(质量分数)不超过3%时, 六铝酸钙的原位生成不仅提高了多孔材料的常温耐压强度和高温抗折强度(1400℃保温0.5 h), 还能改善材料的透气性能; 继续增加纯铝酸钙水泥的加入量, 多孔材料的上述性能降低。当纯铝酸钙水泥添加量(质量分数)为3%时, 试样常温耐压强度为33.6 MPa, 高温抗折强度为6.2 MPa, 达西渗流系数及非达西渗流系数分别为2.54×10-10 m2和1.46×10-6 m。  相似文献   

6.
以钛粉和羟基磷灰石(HA)为原料,采用粉末冶金法制备了生物医用钛基复合材料,研究了烧结温度(1 200、1 300、1 400℃)对其显微组织、物相变化、致密化及抗压强度的影响。结果表明:合适的烧结温度可以使复合材料具有优良的显微组织及力学性能。当烧结温度为1 200℃时,HA已经发生分解并反应,且材料组织疏松;随着烧结温度升高,试样变得致密且显微组织粗大,同时生成TiP及CaTi_4(PO_4)_6等脆性相,其抗压强度反而降低。  相似文献   

7.
The development of calcium phosphate ceramics and other related biomaterials for bone graft involved a better control of the process of biomaterials resorption and bone substitution. The bioactive concept was developed for biphasic calcium phosphate ceramics (BCP). An optimum balance of the more stable phase of HA and more soluble TCP was obtained for controlling gradual dissolution in the body, seeding new bone formation as it releases calcium and phosphate ions into the biological medium. The bone/material interface and the events occurring in the development of this dynamic interface such as cellular response, biodegradation or bioresorption of the materials and their transformation to carbonate hydroxyapatite (CHA) were described. These processes were observed in both bulk samples, implant coating and injectable bone substitute (IBS).  相似文献   

8.
In an effort to make composites from hydroxyapatite and a PEG/PBT copolymer (Polyactive 70/30), chemical linkages were introduced between the filler particles and polymer matrix using hexamethylene diisocyanate as a coupling agent. Infrared spectra (IR) and thermal gravimetric analysis (TGA) confirmed the presence of Polyactive 70/30 on the surface of HA filler particles. The amount of chemically bound polymer was 4.7 wt.%, as determined by TGA. The mechanical properties of the composites, that is, tensile strength and Young's modulus, were improved significantly by the introduction of a chemical linkage between the filler particles and polymer matrix compared to control composites. This method provides an effective way to introduce chemical linkage between HA filler particles and a polymer matrix. By optimizing the grafting process, a further improvement of the mechanical properties in the composites can be expected.  相似文献   

9.
Effects of rare earth (RE) additions on microstructure and mechanical properties of the wrought AZ31 magnesium alloy were investigated. The results show that, by adding 0.3%, 0.6% and 1.0% RE elements, the as-cast microstructure can be refined, and the as-cast alloys‘ elongation and tensile strength can be improved. After extrusion, the alloy with 0.3 % and 0.6% RE additions obtain a finer microstructure and the best mechanical properties, but the alloy with 1.0% RE addition has the coarse A1-RE compound particles in grain boundaries which decreased elongation and tensile properties. Usually, Rare earth (RE) elements were used to improve the creep properties of aluminium-containing magnesium pressure die cast alloys at elevated temperatures. In this paper, it is also found that the high temperature strength of extruded materials can be increased by RE elements additions.  相似文献   

10.
The structures and mechanical properties of a series of thermomechanically processed, direct-quenched martensitic 0.1C-1.4Mn-0.5Mo-B steels containing from 0 to 0.24 wt pct va have been investigated and compared to those obtained after a conventional austenitizing-and-quenching treatment. For all processing conditions, vanadium additions to the base composition are found to increase hardenability (ideal critical parameter,D,); the largest effects (up to a 90 pct increase inD I) are noted when samples are hot-rolled prior to direct quenching. Vanadium additions are also observed to provide significant strengthening in the quenched-and-tempered condition as the result of the precipitation of fine V-Mo carbides. The strengthening increment due to these precipitates is approximately 100 MPa/0.1 wt pct V over the range of vanadium additions examined. At the same time, however, these precipitates reduce notch toughness; on the average, the 20 J transition temperature increases by about 4 °C for each 10 MPa increment in yield strength. For the conditions examined, the best balance of strength and toughness is obtained in direct-quenched samples which are control-rolled(i.e., rolling is completed below the austenite recrystallization temperature) prior to quenching.  相似文献   

11.
稀土对铝导线导电性能和力学性能的影响   总被引:7,自引:0,他引:7  
本文研究了工业生产条件下,稀土铈、镧及混俣稀土对电工用铝导线导电性能和力学性能的影响。结果表明,稀土铈可显著提高强度,稀土镧可显著提高导电性。实验证明,稀土元素的添加量选择在0.2-0.3Wt%的最佳。  相似文献   

12.
Pulsed laser deposited calcium phosphate coatings on titanium alloy have been tested under simulated physiological conditions in order to evaluate the changes in morphology, composition and structure. The coatings were deposited under different conditions to obtain different crystalline structures, ranging from amorphous and mixed crystalline phases to pure crystalline hydroxyapatite (HA). The coated samples were immersed in a Ca-free Hank's balanced salt solution for up to 5 days. Characterization of the coatings was performed by X-ray diffraction, scanning electron microscopy and Fourier-transform Raman spectroscopy before and after immersion. Their dissolution behaviour was also monitored through their mass loss and calcium release. Coatings of pure HA preserve their morphology and structure during the exposure time in solution. In multiphasic coatings, consisting of HA with tetracalcium phosphate (TetraCP) or beta-tricalcium phosphate (beta-TCP) with a-tricalcium phosphate (alpha-TCP), microporosity is induced by the complete dissolution of TetraCP or gamma-TCP. Amorphous calcium phosphate coatings totally dissolve.  相似文献   

13.
none 《粉末冶金学》2013,56(4):309-314
Abstract

The aim of the present work was to estimate the feasibility of selective laser melting (SLM) to produce Ti-hydroxyapatite bioactive composite materials for personalised endosseous implants. Mixtures of Ti6Al7Nb surface conditioned powder with hydroxyapatite up to 5 vol.-% were processed by SLM with the same scanning strategy and laser power in the range of 50–200 W. Specimens with porous structures were characterised from a structural and mechanical point of view. Irrespective to the initial hydroxyapatite content, density increased by increasing the laser power. The microstructure of manufactured parts mainly consisted of α′ martensite. In materials with 5 vol.-% hydroxyapatite, a phosphorous containing phase formed as a consequence of hydroxyapatite decomposition and interaction with the base Ti alloy. By increasing the laser power, the tensile strength increased mainly due to the density improvement of all the investigated materials.  相似文献   

14.
The polymer blend of Polyamide66 and Polytetrafluroethylene (PA66/PTFE) (80/20 wt.%) were selected for the study. These blends were reinforced with 5, 10, 15, 20, 25 and 30 wt.% of silane treated short glass fibers (SGF) and were prepared by using melt mixing method with the help of twin screw extruder. The mechanical properties such as tensile strength, flexural strength, impact strength were studied in addition to hardness of the blend composites as per ASTM. The results revealed that the addition of SGF into PA66/PTFE blend greatly enhanced the mechanical properties of the polymer blend. The tensile strength and the flexural strength of the blend was almost double than that of the neat blend after reinforcing 30 wt.% of SGF. The addition of SGF into the blend greatly improved the flexural modulus and also the hardness of the blend. The impact strength of the blend decreased initially and then increased after the SGF addition into the blend. The density of PA66/PTFE blend increased after SGF addition. The strain at break almost remained constant but deflection due to bending decreased with the addition of SGF into the studied polyblend. However, the effect of higher loading of SGF on the mechanical behavior of PA66/PTFE blend was greatly appreciable. The fractured surfaces of the specimens were examined by using Scanning Electron Microscope photographs (SEM).  相似文献   

15.
Cast specimens of nickel-base superalloys 713C and Mar-M200 with nominal additions of 0, 0.5, and 1 wt pct Si were evaluated for oxidation and corrosion resistance, tensile and stress-rupture properties, microstructure, and phase relations. Results are com-pared with those of an earlier study of the effects of Si in B-1900. Si had similar effects on all three superalloys. It improves oxidation resistance but the improvement in 713C and Mar-M200 was considerably less than in B-1900. Hot-corrosion resistance is also improved somewhat. Si is, however, detrimental to mechanical properties, in particular, rupture strength and tensile ductility. Si has two obvious microstructural effects. It in-creases the amount of γ precipitated in eutectie nodules and promotes a Mo(Ni,Si)2 Laves phase in the alloys containing Mo. These microstructural effects do not appear responsible for the degradation of mechanical properties, however.  相似文献   

16.
As-cast Cu-La alloys with La contents in the range of 0–0.32 wt.% were fabricated by vacuum melting method. The effects of La on microstructure and mechanical properties of as-cast pure copper were investigated using optical microscopy(OM), scanning electronic microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and tensile test. The results showed that La had obvious effects on the solidification microstructure and the grain refinement of as-cast pure copper. With the increase of La content, the ultimate tensile strength, the yield strength and the microhardness increased gradually, but the elongation increased first and then decreased while La content exceeded 0.089 wt.%. The improvement of mechanical properties was attributed to the effect of grain refinement strengthening, solid solution strengthening, second phase strengthening and purifying. However, excessive adding La would deteriorate the elongation owing to the excessive Cu6 La phases.  相似文献   

17.
Two reinforced hydroxyapatite (HA) coatings with an intermediate layer of zirconia were deposited on Ti–6Al–4V by vacuum plasma spray (VPS) technique. In first coating, HA was reinforced with 10 wt % Al2O3 whereas in second coating, HA was reinforced with 10 wt % ZrO2. The objective of this study was to investigate the microstructure, phase formation and mechanical properties like hardness and bond strength of as-sprayed coatings and the coatings after post coating heat treatment at 700 °C for 1 h. The characterization of the coatings was performed by using SEM/EDAX, XRD, porosity, crystallinity and roughness measurement. The coatings were also evaluated for mechanical properties like hardness and tensile bond strength. It was observed that after post coating heat treatment, crystallinity increased and porosity decreased which indicated recrystallization of amorphous phases of as-sprayed coatings. Heat treatment resulted into improvement in cross-sectional hardness, however sharp decrease in bond strength was observed.  相似文献   

18.
以电炉镍铁渣和普通高炉渣为主要原料,采用Petrurgic一步法制备了微晶玻璃,并结合力学性能测试,对样品进行了X射线衍射(XRD)、扫描电镜(SEM)等分析,讨论了电炉镍铁渣和普通高炉渣配比、Mg2+含量以及晶核剂TiO2对成品微观结构及性能的影响规律.结果表明:将熔渣冷却至900℃结晶和650℃退火,能够制备出性能优良的微晶玻璃.当Mg2+含量增加且析出晶体为单一辉石族矿物时,微晶玻璃具有较高的力学性能.电炉镍铁渣或Mg2+含量增加,会导致其辉石族矿物含量增加,当两种渣混合掺量达到90%(镍铁渣质量分数50%,高炉渣质量分数为40%)且外掺2% MgO时,所制备微晶玻璃结构致密,仅含有单一辉石族矿物,包括透辉石、普通辉石和斜顽辉石,从而具有最优的力学性能,其抗折强度达210 MPa,抗压强度达1162 MPa.电炉镍铁渣或者MgO含量进一步增加,会导致镁橄榄石析出,此时微晶玻璃的力学性能显著下降.TiO2含量的增加不改变微晶玻璃晶体种类,合适掺入TiO2(本实验为质量分数2%)能够增强透辉石含量,提升性能;但过量掺入会抑制晶体生长,导致其性能下降.   相似文献   

19.
采用双合金法制备系列烧结Nd—Fe—B磁体(保持其主合金成分不变:Ndl4.1Dy0.5Fe79.0B6.4(原子分数),所添加的晶界合金中的B含量从0.95%(原子分数)逐步增加到6.95%(原子分数)),研究了微量添加晶界合金对烧结Nd—Fe—B力学性能及微观结构的影响。研究结果表明:微量添加晶界合金所制备的磁体,其抗弯强度值普遍高于单合金法制得的磁体;前者的抗弯强度最高可达397MPa,高于铸造,热压磁体的抗弯值,而后者的抗弯强度仅为309MPa。由相结构分析可知,当添加的晶界合金中的B含量为O.95(原子分数),主相晶格的四方度减小,这时磁体具有最高的抗弯强度。另外,微量添加晶界合金,可使磁体中晶界相的分布更加均匀,从而基本上消除了主相晶粒直接接触的现象,使晶粒的不规则长大得到抑制。这也是微量添加晶界合金后磁体具有较高抗弯强度的原因之一。对磁性能的研究结果表明,微量添加晶界合金几乎不影响烧结Nd—Fe—B磁体的磁性能。  相似文献   

20.
周坐东 《湖南有色金属》2010,26(2):34-36,46
利用光学显微镜、X射线衍射和扫描电镜等分析研究含铈镁合金AZ91D(0.25%Ce、0.7%Ce、0.95%Ce)的显微组织,并对其力学性能进行了测试,同时与不含铈镁合金AZ91D进行了比较。结果表明,加入一定量Ce后的镁合金AZ91D形成杆状化合物Al4Ce,被推移到生长界面,阻碍枝晶的自由生长,从而细化合金显微组织;Ce能提高镁合金AZ91D抗拉强度和硬度,而对其屈服强度和延伸率影响不大;加入0.7%Ce的AZ91D镁合金晶粒细化效果和综合力学性能比较理想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号