首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Mitogen-activated protein kinase (MAPK) is activated in response to both receptor tyrosine kinases and G-protein-coupled receptors. Recently, Gi-coupled receptors, such as the alpha 2A adrenergic receptor, were shown to mediate Ras-dependent MAPK activation via a pathway requiring G-protein beta gamma subunits (G beta gamma) and many of the same intermediates involved in receptor tyrosine kinase signaling. In contrast, Gq-coupled receptors, such as the M1 muscarinic acetylcholine receptor (M1AChR), activate MAPK via a pathway that is Ras-independent but requires the activity of protein kinase C (PKC). Here we show that, in Chinese hamster ovary cells, the M1AChR and platelet-activating factor receptor (PAFR) mediate MAPK activation via the alpha-subunit of the G(o) protein. G(o)-mediated MAPK activation was sensitive to treatment with pertussis toxin but insensitive to inhibition by a G beta gamma-sequestering peptide (beta ARK1ct). M1AChR and PAFR catalyzed G(o) alpha-subunit GTP exchange, and MAPK activation could be partially rescued by a pertussis toxin-insensitive mutant of G(o) alpha but not by similar mutants of Gi. G(o)-mediated MAPK activation was insensitive to inhibition by a dominant negative mutant of Ras (N17Ras) but was completely blocked by cellular depletion of PKC. Thus, M1AChR and PAFR, which have previously been shown to couple to Gq, are also coupled to G(o) to activate a novel PKC-dependent mitogenic signaling pathway.  相似文献   

5.
Chimeric receptors containing the entire or various cytoplasmic domains of either gp130 or leukemia inhibitory factor receptor alpha (LIFR) were used to identify signaling molecules and regions of these polypeptides required for the stimulation of mitogen-activated protein kinase (MAPK). Coexpression of dominant-negative Jak2 inhibited chimeric receptor-stimulated MAPK activity by approximately 70%, while expression of dominant-negative Ras completely blocked MAPK activation by either receptor polypeptide. Deletion analysis identified a 24-amino acid region of gp130 that was necessary for maximal stimulation of MAPK, and contained box 3 (positions 120-129) and a consensus tyrosine binding motif (Tyr-118) for the protein-tyrosine phosphatase, SHP2. Expression of receptors lacking this region or of chimeric gp130(Y118F) point mutants inhibited MAPK activity by approximately 55%, suggesting that Tyr-118, but not box 3, was required during activation of MAPK by gp130. Similarly, expression of chimeric LIFR constructs lacking box 3 maximally stimulated MAPK activity, while those lacking Tyr-115, a putative SHP2 binding site, inhibited stimulation of MAPK by this polypeptide. Our results demonstrate that gp130 and LIFR stimulate MAPK activity through box 3-independent mechanisms involving: (i) effects at Tyr-118 and Tyr-115, respectively, for maximal stimulation of MAPK activity and (ii) a Jak/Tyk-dependent pathway that, together with Tyr-118- or Tyr-115-generated signals, converges at the level of Ras during activation of MAPK by cytokine.  相似文献   

6.
7.
8.
Accumulating evidence indicates that the Src homology 2-containing tyrosine phosphatase 2 (SHP-2) plays an important role in signal transduction through receptor tyrosine kinase and cytokine receptors. In most models, SHP-2 appears to be a positive mediator of signaling. However, coligation of Fc gamma RIIB1 with B cell Ag receptors (BCR) inhibits BCR-mediated signaling by a mechanism that may involve recruitment of phosphatases SHP-1, SHP-2, and the SH2 containing inositol 5'phosphatase (SHIP) to the phosphorylated Fc gamma RIIB1 immunoreceptor tyrosine-based inhibitory motif. The role of SHP-2 in BCR-mediated cell activation and in Fc gamma RIIB1-mediated inhibitory signaling is unclear. In this study we assessed the association of SHP-2 with phosphotyrosine-containing cellular protein(s) before and after stimulation through these receptors. BCR stimulation induced the association of SHP-2 with a single major tyrosyl-phosphorylated molecule (pp120) that had an apparent molecular mass of 120 kDa. Coligation of Fc gamma RIIB1 with BCR led to a rapid decrease in SHP-2 association with pp120. Analysis of the subcellular localization of pp120 showed that the complex of SHP-2 and tyrosyl-phosphorylated p120 occurs predominantly in the cytosol. Furthermore, the binding of the two molecules was mediated by the interaction of tyrosyl-phosphorylated p120 with the SHP-2 N-terminal SH2 domain. These findings indicate that SHP-2 and pp120 function in BCR signaling, and this function may be inhibited by Fc gamma RIIB1 signaling.  相似文献   

9.
In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately phosphorylated, with maximal phosphorylation detected at 15 min; the signal is substantially diminished by 60 min. In response to interferon-gamma, tyrosine phosphorylation of IRS-2 was prolonged, with substantial signal still detected at 60 min. Characterization of the mechanism of signaling utilized by GH indicated that tyrosine residues in GH receptor are not necessary for tyrosyl phosphorylation of IRS-2; however, the regions of GH receptor necessary for IRS-2 tyrosyl phosphorylation are the same as those required for JAK2 association and tyrosyl phosphorylation. The role of IRS-2 as a signaling molecule for GH is further demonstrated by the finding that GH stimulates association of IRS-2 with the 85-kDa regulatory subunit of phosphatidylinositol 3'-kinase and with the protein-tyrosine phosphatase SHP2. These results are consistent with the possibility that IRS-2 is a downstream signaling partner of multiple members of the cytokine family of receptors that activate JAK kinases.  相似文献   

10.
The SH2/SH3 adapters Nck, Grb2 and Crk promote the assembly of signaling complexes by binding to tyrosine phosphorylated proteins using their SH2 domains and to proline-rich sequences on effector molecules using their SH3 domains. FGF, which activates a receptor tyrosine kinase, induces mesoderm formation in Xenopus embryos through activation of the Ras/Raf/MAPK signaling pathway. We present evidence that dominant-negative mutants of Nck and Grb2, but not Crk1, can inhibit mesoderm-specific gene induction by eFGF in Xenopus animal cap explants. We also show that dominant-negative mutants of Grb2 and Nck can inhibit eFGF-induced Erk1 activation in Xenopus animal caps, and that targeting the first two SH3 domains of Nck to the membrane can activate Erk1 in the absence of eFGF. Furthermore, combinations of the dominant-negative Grb2 mutants with the inhibitory Nck mutant synergistically inhibited Erk1 activation by eFGF in Xenopus animal caps, suggesting that the dominant-negative Nck and Grb2 mutants inhibit Erk1 activation by binding to different proteins. By contrast only Grb2 mutants could inhibit eFGF-induced Erk1 activation in human 293 cells, demonstrating diversity in the specific mechanisms of signaling from FGF to MAP kinases in different cells.  相似文献   

11.
The Src homology 2 (SH2)-containing protein tyrosine phosphatase 1, SHP-1, is highly expressed in all hematopoietic cells as well as in many non-hematopoietic cells, particularly in some malignant epithelial cell lines. In hematopoietic cells, SHP-1 negatively regulates multiple cytokine receptor pathways. The precise function and the targets of SHP-1 in non-hematopoietic cells, however, are largely unknown. Here we demonstrate that SHP-1 associates with both the tyrosine-phosphorylated platelet-derived growth factor (PDGF) receptor and the p85 subunit of phosphatidylinositol 3-kinase in MCF-7 and TRMP cells. Through the use of mutant PDGF receptors and performing peptide competition for immunoprecipitation, it was determined that SHP-1 independently associates with the PDGF receptor and p85 and that its N-terminal SH2 domain is directly responsible for the interactions. Overexpression of SHP-1 in TRMP cells transfected with the PDGF receptor markedly inhibited PDGF-induced c-fos promoter activation, whereas the expression of three catalytically inactive SHP-1 mutants increased the c-fos promoter activation in response to PDGF stimulation. These results indicate that SHP-1 might negatively regulate PDGF receptor-mediated signaling in these cells. Identification of the association of SHP-1 with the PDGF receptor and p85 in MCF-7 and TRMP cells furthers our understanding of the function of SHP-1 in non-hematopoietic cells.  相似文献   

12.
Sphingomyelinase (SMase) activation and ceramide generation have emerged as an important signaling pathway transducing diverse biological effects of cytokine receptors like p55 tumor necrosis factor (TNF) receptor or Fas. Here we describe the TNF-dependent activation of acid SMase (A-SMase) through the p55 TNF receptor-associated proteins TRADD and FADD. Overexpression of TRADD and FADD in 293 cells did not change basal activity of A-SMase but enhanced TNF-induced stimulation of A-SMase. Other TNF R55-associated proteins like TRAF2 and RIP, which were reported to mediate TNF R55-mediated activation of nuclear factor kappaB, did not affect activation of A-SMase. Caspase inhibitors markedly reduced A-SMase activity, suggesting the involvement of an ICE-like protease in TRADD/FADD-mediated activation of A-SMase. Overexpression of caspase-8/a (FLICE/MACH) or caspase-10/b (FLICE2) did not change A-SMase activity, suggesting that TRADD/FADD-mediated activation of A-SMase involves a yet to be defined caspase-like protease distinct from caspase-8/a or -10/b.  相似文献   

13.
14.
Binding of IL-2 to its receptor activates several biochemical pathways, including JAK-STAT, Ras-mitogen-activated protein kinase, and phosphatidylinositol 3'-kinase (PI 3'-kinase) pathways. Recently, it has been shown that the SH2-containing phosphatase, SHP-2, becomes phosphorylated in response to IL-2 stimulation, associates with PI3'-kinase and Grb2, and can exert a positive regulatory role in IL-2 signaling. We now report the identification of a prominent 98-kDa protein (p98) found to be phosphorylated in response to IL-2 stimulation and coprecipitated with SHP-2, the p85 subunit of PI 3'-kinase and Grb2. Interestingly, whereas IL-4 is known to activate PI 3'-kinase, we did not observe any p98 phosphorylation in response to IL-4 stimulation. p98 can form a multipartite complex with all these proteins as immunodepleting with anti-p85 antiserum substantially reduced the amount of p98 immunoprecipitated by SHP-2 and Grb2; the converse was also true. Furthermore, phosphorylation of p98 did not occur in cells lacking JAK3, suggesting that it may be a JAK substrate. Finally, deglycosylation of p98 did not alter its migration, suggesting p98 is not a member of the recently described SHP substrate/signal-regulatory proteins family of transmembrane glycoproteins. Thus p98 is a prominent IL-2-dependent substrate that associates with multiple proteins involved in IL-2 signaling and may play an important role in coupling the different signal transduction pathways activated by IL-2.  相似文献   

15.
The diverse physiological functions exerted by the neuropeptide galanin may be regulated by multiple G protein-coupled receptor subtypes and intracellular signaling pathways. Three galanin receptor subtypes (GalRs) have been recently cloned, but the G protein coupling profiles of these receptors are not completely understood. We have generated GalR1- and GalR2-expressing Chinese hamster ovary (CHO) cell lines and systematically examined the potential for these two receptors to couple to the Gs, Gi, Go, and Gq proteins. Galanin did not stimulate an increase in cAMP levels in GalR1/CHO or GalR2/CHO cells, suggesting an inability of either receptor to couple to Gs. Galanin inhibited forskolin-stimulated cAMP production in GalR1/CHO cells by 70% and in GalR2/CHO cells by 30%, suggesting a strong coupling of GalR1 to Gi and a more modest coupling between GalR2 and Gi. GalR1 and GalR2 both mediated pertussis toxin-sensitive MAPK activity (2-3-fold). The stimulation mediated by GalR1 was inhibited by expression of the C-terminus of beta-adrenergic receptor kinase (beta ARKct), which specifically inhibits G beta gamma signaling, but was not affected by the protein kinase C (PKC) inhibitor, bis[indolylmaleimide], or cellular depletion of PKC. In contrast, GalR2-mediated MAPK activation was not affected by beta ARKct expression but was abolished by inhibition of PKC activity. The data demonstrate that GalR1 is coupled to a Gibetagamma signaling pathway to mediate MAPK activation. In contrast, GalR2 utilizes a distinct signaling pathway to mediate MAPK activation, which is consistent with Go-mediated MAPK activation in CHO cells. Galanin was unable to stimulate inositol phosphate (IP) accumulation in CHO or COS-7 cells expressing GalR1. In contrast, galanin stimulated a 7-fold increase in IP production in CHO or COS-7 cells expressing GalR2. The GalR2-mediated IP production was not affected by pertussis toxin, suggesting a linkage of GalR2 with Gq/G11. Thus, the GalR1 receptor appears to activate only the Gi pathway. By contrast, GalR2 is capable of stimulating signaling which is consistent with activation of Go, Gq/G11, and Gi. The differential signaling profiles and the tissue distribution patterns of GalR1 and GalR2 may underlie the functional spectra of galanin action mediated by these galanin receptors and regulate the diverse physiological functions of galanin.  相似文献   

16.
17.
Some cytokines can prolong cell survival in hematolymphoid cells and thus may be crucial for regulation of hematolymphoid cell numbers. It has been shown that mitogenic cytokines can induce not only cellular proliferation but also cellular survival by inhibiting apoptosis in hematolymphoid cells. The signals transduced by these cytokines eventually go to the nucleus and induce expression of their specific target genes. In this context, the induction of anti-apoptotic molecules such as Bcl-2 oncoprotein and BAG-1 protein seems to be a key event for the anti-apoptotic function of cytokines. In T lymphocytes, the interaction of interleukin-2 (IL-2) with its receptor (IL-2R) induces both cellular proliferation and cellular survival. The IL-2R consists of three subunits, i.e., IL-2Ralpha, IL-2R(beta)c, and IL-2R(gamma)c chains. Structure-function analysis of the IL-2R(beta)c chain has revealed that there are at least two functional domains within the subunit. The serine-rich (S) region but not the acidic (A) region within the (beta)c chain is responsible for the mitogenic signaling of IL-2R. The S region is also crucial for the cellular survival signaling, which include the induction of anti-apoptotic gene expressions bcl-2 and bag-l. However, the cellular survival signaling is segregated from the mitogenic signaling in independence from the Jak-family protein kinase activation and rapamycin sensitivity. Segregation of the two signaling pathways of a cytokine receptor has also been shown in receptors of the other mitogenic cytokines. Current topics regarding signal transductions of cytokine receptors responsible for the suppression of apoptosis are discussed in this review.  相似文献   

18.
19.
Through specific interactions with members of the tumor necrosis receptor (TNFR) family, adapter molecules such as the serine/threonine (Ser/Thr) kinase RIP mediate divergent signaling pathways including NF-kappaB activation and cell death. In this study, we have identified and characterized a novel 61-kDa protein kinase related to RIP that is a component of both the TNFR-1 and the CD40 signaling complexes. Receptor interacting protein-2 (RIP2) contains an N-terminal domain with homology to Ser/Thr kinases and a C-terminal caspase activation and recruitment domain (CARD), a homophilic interaction motif that mediates the recruitment of caspase death proteases. Overexpression of RIP2 signaled both NF-kappaB activation and cell death. Mutational analysis revealed the pro-apoptotic function of RIP2 to be restricted to its C-terminal CARD domain, whereas the intact molecule was necessary for NF-kappaB activation. RIP2 interacted with other members of the TNFR-1 signaling complex, including inhibitor of apoptosis protein cIAP1 and with members of the TNFR-associated factor (TRAF) family, specifically TRAF1, TRAF5, and TRAF6, but not with TRAF2, TRAF3, or TRAF4. These TRAF interactions mediate the recruitment of RIP2 to receptor signaling complexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号