共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
提出一种基于小生境自适应差分进化小波神经网络(NADE-WNN)的方法对不确定混沌系统进行控制。该方法利用小波神经网络学习未知模型混沌系统的动态特性并实施控制,为提高神经网络的学习精度和收敛速度,采用小生境自适应差分进化算法同时优化小波神经网络的结构和参数,简化网络结构,提高网络的学习精度和全局收敛性。仿真实验结果表明,在有外部干扰和参数摄动的情况下,NADE-WNN仍能对不确定混沌系统进行有效控制,且网络结构、控制精度和收敛速度都优于传统神经网络。 相似文献
3.
4.
5.
6.
7.
提出一种基于预测控制的神经网络控制方法,将模型未知时的混沌运动控制到不稳定的不动点(UFP)处,该控制系统不需要UFP的位置及其局性态等知识,它包括观测器、带反馈校正的神经网络在预测器和在线训练的神经网络控制器,其方法简便,收敛速度比现有同类方法快得多,同时还分析了控制系统的稳定性,并证明了神经网络控制器的收敛性,理论推导和仿真结果都表明了该方法的有效性。 相似文献
8.
针对具有未知动态的电驱动机器人,研究其自适应神经网络控制与学习问题.首先,设计了稳定的自适应神经网络控制器,径向基函数(RBF)神经网络被用来逼近电驱动机器人的未知闭环系统动态,并根据李雅普诺夫稳定性理论推导了神经网络权值更新律.在对回归轨迹实现跟踪控制的过程中,闭环系统内部信号的部分持续激励(PE)条件得到满足.随着PE条件的满足,设计的自适应神经网络控制器被证明在稳定的跟踪控制过程中实现了电驱动机器人未知闭环系统动态的准确逼近.接着,使用学过的知识设计了新颖的学习控制器,实现了闭环系统稳定、改进了控制性能.最后,通过数字仿真验证了所提控制方法的正确性和有效性. 相似文献
9.
10.
为解决一类带干扰的不确定非线性系统中存在的两类未知项——未知函数和外界干扰,采用了直接自适应神经网络控制方法设计控制器。控制器设计中利用径向基函数神经网络良好的逼近性来近似未知函数,利用非线性衰减项来抑制干扰。所用方法结构简单、算法简洁,在一定条件下稳定性和收敛性能定性地得到保证。最后,仿真结果证明了该方法是正确的。 相似文献
11.
The synchronization problem is studied in this paper for non-identical chaotic neural networks with time delays and fully unknown parameters, where the mismatched parameters, activation functions and neural network architectures are taken into account. To overcome the difficulty that complete synchronization of non-identical chaotic neural networks cannot be achieved only by utilizing output feedback control, we design an adaptive sliding mode controller to realize the synchronization. Our synchronization criteria are easily verified and do not need to solve any linear matrix inequality. These results generalize a few previous known results and remove some restrictions on the parameters, activation functions and neural network architectures. This paper also presents an illustrative example and uses simulated results of this example to show the feasibility and effectiveness of the proposed scheme. 相似文献
12.
直接自适应动态递归模糊神经网络控制及其应用 总被引:1,自引:0,他引:1
针对某些仿射非线性系统中各状态变量间呈微分关系的特点,本文提出仅取某些可测状态变量
作为动态递归模糊神经网络(dynamic recurrent fuzzy neural network, DRFNN) 的输入,而由DRFNN 的反馈矩阵
描述系统内部动态关系的直接自适应DRFNN 控制算法,克服了将系统所有变量作为输入的传统模糊神经网
络(traditioanl fuzzy neural network, TFNN) 因某些不可测状态变量所导致的不可实现问题.在电液伺服系统中的
应用结果表明:直接自适应DRFNN 控制算法相对于TFNN 控制算法对系统稳态特性的改善具有较大的优越
性. 相似文献
13.
14.
15.
In this paper, we study the control of chaotic systems with unknown parameters. A stable adaptive control scheme is used to guarantee that the parameter estimator converges to stabilizing values such that the controlled chaotic system asymptotically approaches a reference point. A Lyapunov function approach is used to prove a global result which guarantees the stability of both controlled chaotic system and the adaptive parameter estimator. The center manifold theorem is used to prove the stability of the adaptive parameter estimator.To demonstrate the usefulness of this adaptive control of chaotic systems, computer simulation results are provided. We use Chua's circuit with cubic nonlinearity in our simulations. We provide the simulation results of control of Chua's circuit with 6 unknown parameters. 相似文献
16.
Feedback-Linearization-Based Neural Adaptive Control for Unknown Nonaffine Nonlinear Discrete-Time Systems 总被引:3,自引:0,他引:3
《Neural Networks, IEEE Transactions on》2008,19(9):1615-1625
17.
18.
19.
混沌同步问题的研究是混沌控制中的一个热点问题.文中利用自适应 H∞同步控制方法和非线性自适应同步方法,为参数相同的陈氏混沌系统设计了自适应同步控制器.根据Lyapunov稳定性原理,从理论上讨论并证明了陈氏混沌系统H∞自适应同步控制器和非线性自适应同步控制器的存在条件,并根据其存在条件进一步得到了陈氏混沌系统H∞自适应同步控制器和非线性自适应同步控制器的的构造方法,通过仿真数值计算的结果表明了这两种方法的有效性. 相似文献