首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel etching method for an optical fibre probe of a scanning near-field optical microscope (SNOM) was developed to fabricate a variety of tip shapes through dynamic movement during etching. By moving the fibre in two-phase fluids of HF solution and organic solvent, the taper length and angle can be varied according to the movement of the position of the meniscus on the optical fibre. This method produces both long (sharp angle) and short (wide angle) tapered tips compared to tips made with stationary etching processes. A bent-type probe for a SNOM/AFM was fabricated by applying this technique and its throughput efficiency was examined. A wide-angle probe with a 50 degrees angle at the tip showed a throughput efficiency of 3.3 x 10(-4) at a resolution of 100 nm.  相似文献   

2.
A novel etching method for an optical fibre probe of a scanning near-field optical microscope (SNOM) was developed to fabricate a variety of tip shapes through dynamic movement during etching. By moving the fibre in two-phase fluids of HF solution and organic solvent, the taper length and angle can be varied according to the movement of the position of the meniscus on the optical fibre. This method produces both long (sharp angle) and short (wide angle) tapered tips compared to tips made with stationary etching processes. A bent-type probe for a SNOM/AFM was fabricated by applying this technique and its throughput efficiency was examined. A wide-angle probe with a 50° angle at the tip showed a throughput efficiency of 3.3 × 10−4 at a resolution of 100 nm.  相似文献   

3.
The formation of probe tips is a crucial step in all forms of scanning probe microscopy (SPM). In this work single-mode optical fibres are chemically etched in a variable temperature bath of etchant solution (HF acid buffered with ammonium fluoride) to produce tips for optical SPM. Tip evolution is monitored by prematurely truncating the etching process and imaging the tip end-structure using atomic force microscopy (AFM). In the case of a visible regime single-mode fibre the AFM images show a remarkable ring structure in the central cladding region and a tip structure in the core with a central depression; this serves to demonstrate the efficacy of chemical etching for converting compositional variation to three-dimensional topography. In the case of a standard, single-mode optical communications fibre the (projected) tip cone angle is assessed from AFM images in the early stages of tip formation. Values of the cone angle thus determined, for different etch conditions, are compared to those predicted by a model in which the independently determined core and cladding etch rates, and core diameter are the sole determinants of the final tip geometry. The model was devised in the context of etching multi-mode fibres and is shown to be valid here for single-mode fibres within the range of experimental accuracy and etch conditions examined.  相似文献   

4.
A selective chemical etching was used to fabricate fiber probes for the photon scanning tunneling microscope (PSTM). The cladding diameter of the fiber probe was controlled by varying the first-step etching time. The cone angle of the fiber probe tip was controlled by varying the doping ratio of the fiber and the composition of the etching solution. A cladding diameter of 8 μm and a tip diameter of about 3 nm were fabricated. The smallest cone angle was 14°.  相似文献   

5.
A selective chemical etching was used to fabricate fiber probes for the photon scanning tunneling microscope (PSTM). The cladding diameter of the fiber probe was controlled by varying the first-step etching time. The cone angle of the fiber probe tip was controlled by varying the doping ratio of the fiber and the composition of the etching solution. A cladding diameter of 8 μm and a tip diameter of about 3 nm were fabricated. The smallest cone angle was 14°.  相似文献   

6.
Shape control of near-field probes using dynamic meniscus etching   总被引:1,自引:0,他引:1  
Dynamic etching methods for fabricating fibre optic tips are explored and modelled. By vertically translating the fibre during etching by an HF solution under an organic protective layer, a variety of tip shapes were created. The probe taper lengths, cone angles and geometrical probe shapes were measured in order to evaluate the dynamic meniscus etching process. Fibre motion, etching rate, meniscus distortion and etching time were all found to be important variables that can be used to control the final probe shape.  相似文献   

7.
超声技术在石英光纤腐蚀中的运用   总被引:1,自引:0,他引:1  
为了获得光滑的腐蚀光纤表面并精确管理光纤的腐蚀直径,采用自行设计的超声腐蚀系统,在质量百分比浓度为12.5%的氢氟酸(HF)溶液中研究了超声功率和腐蚀温度对石英光纤包层、纤芯腐蚀速率以及腐蚀后光纤表面形貌的影响.研究表明:在HF溶液中,超声扰动有利于提高光纤的腐蚀速率,光纤腐蚀速率与腐蚀时间呈非线性关系,腐蚀表面随着腐蚀的进行越来越粗糙.基于研究结果,进一步采用质量百分比浓度为12.5%的HF溶液和25%的NH4OH溶液配制了缓冲氢氟酸(BHF)溶液,探讨了光纤腐蚀速率及表面形貌的变化,结果表明:在V(HF)∶V(NH4OH)=2的BHF溶液中,当超声功率为165 W、腐蚀温度为40℃时,可获得光滑的腐蚀光纤表面和腐蚀速率与腐蚀时间的线性关系.  相似文献   

8.
9.
基于虹吸原理和动态大锥角化学腐蚀方法进行改进融合,成功制备出理想的高光传输效率和高分辨力的光纤探针。针尖尺寸在80nm~300nm,锥角可以控制在32~°45°内。并通过SPSS(statistical product and serv ice so lutions)数据分析软件从数理统计方面客观分析了该方法与静态化学腐蚀方法的显著差异。  相似文献   

10.
Tapered fibre tips fabricated using mechanical polishing method is studied. The fibre tips are formed by sequential polishing flat-ended single mode fibres with decreasing aluminium oxide polishing film grit size. Based on the proposed technique, tapered fibre tips with cone angle ranging from 30° to 130° are fabricated by controlling the polishing angle. Besides the variety of cone angle, considerable smoothness of the fibre tip surface may assist in good metal coating and hence a well-defined aperture can be obtained. In addition, this paper presents a two-step hybrid fabrication method combining the proposed polishing method with chemical etching method to increase the possible fibre tip cone angles achievable by chemical etching method.  相似文献   

11.
Bent near‐field optical probes for biological applications have been fabricated using a combination of a two‐step chemical etching method and focused ion beam milling to create a well‐defined aperture. The transmission efficiencies have been evaluated as a function of laser wavelength (λ) and aperture size (D) for both large and small core fibres. The probe transmission behaviour follows a (D/λ)3 relationship. The double‐etched probes are compared to pulled probes fabricated from highly GeO2‐doped dispersion compensating fibre and a standard single‐mode optical fibre. The transmission efficiencies of both types of pulled probes are approximately two orders of magnitude lower than double‐etched probes with similar aperture sizes. To demonstrate the utility of the various probes, their imaging performance has been evaluated for samples of polymer beads and phase‐separated phospholipid monolayers of dipalmitoylphosphatidylcholine or cholesterol/phosphatidylcholine/sphingomyelin mixtures. Both pulled and double‐etched probes are suitable for fluorescence imaging of polymer spheres. However, pulled probes are rapidly damaged at the higher input laser intensities required for fluorescence imaging of monolayer samples doped with < 1% of a fluorescent dye‐labelled lipid. The images obtained with the double‐etched probes show excellent spatial resolution and signal/noise, illustrating the potential of such probes for imaging of biological samples.  相似文献   

12.
Fibre‐top probes are self‐aligned, all optical devices obtained by carving a cantilever on top of a 125‐m diameter single‐mode optical fibre. In this paper, we show that this design can be adapted to smaller fibres as well. We evaluated the performance of a 20‐m diameter probe in contact mode atomic force microscopy (AFM) and that of a 50‐m diameter probe in nanoindentation measurements. AFM images proved to be accurate both in air and water, although some distortion was observed because of the mechanical bending of the fibre during scanning. Indentation curves resembled those obtained with larger devices. The maximum indentation depth, however, is limited by the small dimensions of the cantilever.  相似文献   

13.
Using custom made experimental apparatus, the art of electrochemical etching was systematically studied for fabricating micro/nano tungsten probes with controllable tip profiles of exponential, conical, multidiameter, and calabashlike shapes. The characteristic parameters of probe including length, aspect ratio, and tip apex radius could also be well defined. By combining of static and dynamic etching, the conical-shape probe with length up to several millimeters, controllable tip apex radius, and cone angle could be fabricated. In addition, by continuously lifting the tungsten wire up during the electrochemical etching with different speeds and distances, the multidiameter shape probe could be fabricated. Finally by controlling the anodic flow, the multiple "neck-in" could be realized creating a calabashlike probe. The aspect ratio of probes depends on (i) the effective contact time between the surrounding electrolyte and the wire, (ii) the neck-in position of immersed tungsten wire. Under the optimized etching parameters, tungsten probes with a controllable aspect ratio from 20:1 to 450:1, apex radius less than 20 nm, and cone angle smaller than 3° could be achieved. The technique is well suited for the tungsten probe fabrication with a stabilized stylus contour, ultra-sharp apex radius, and high production reproducibility. The art for preparing microprobes will facilitate the application of such microprobes in diverse fields such as dip-pen nanolithography, scanning probe microscopy, micromachining, and biological cellular studies.  相似文献   

14.
Using a chemically etched fibre probe through a plastic jacket provides a simple way to smooth a tip's surface. Convection flow in the plastic tube and lateral diffusion with fixed meniscus height has been proposed to explain such improvement. Fibres with additive thin polymer layers and bare fibres with thick untapered/tapered plastic layers have been prepared to verify the dominant mechanism. The additive layers greatly change the tip's geometry and bare‐fibres with untapered plastics cannot form tips. This confirmed that lateral diffusion dominates the etching process. Based on our investigation, we propose a new non‐meniscus end‐etching method by using tapered plastics. Unlike etching methods with meniscus, the end‐etching method can regularly form very smooth tips. It is insensitive to vibrations and temperature drifts and also suitable for most fibres.  相似文献   

15.
The study aimed at finding an optimal combination of acid concentration and etching time when nitric acid is used as etchant for the study of the finer details of human dental enamel structure. Four hundred 2–3‐mm‐thick segments of facio‐lingually sectioned human third molar crowns were assigned to 20 groups with 20 specimens in each group, each group differing with respect to acid concentration (0.1, 1, 2.5, and 5%) and etching time (15, 30, 45, 90, and 180 s). After etching and preparation, specimens were observed in the scanning electron microscope (SEM). Surface roughness/topography increased with increasing acid concentration and increasing etching time, but not in a linear fashion; generally, prisms tended to go from flat‐surfaced to cone‐shaped and prism sheaths from fissure‐like to wedge‐shaped. Intragroup variations and intergroup similarities were considerable. The two major enamel factors determining the etch effect are crystal orientation and prism sheath properties. Other factors, such as distribution of porosities and crystal quality, also contribute probably. Slight to moderate topography is best for observing the finer enamel structure, for example, etching with concentrations in the range 0.1–1% and with etching times in the range 15–90 s, the stronger the acid, the shorter the time. The depth effect of nitric acid is judged to be relatively small. Considerable variations in expression of prism cross‐striations were observed. SEM observations of acid‐etched enamel in carefully selected planes are a powerful method for the study of enamel structure, bearing in mind the artifactual aspects of the observed surface.  相似文献   

16.
The microstructure and location of impurities in polar ice are of great relevance to ice core studies. We describe a reliable method to examine ice in the scanning electron microscope (SEM). Specimens were cut in a cold room and could have their surfaces altered by sublimation either before (pre‐etching) or after (etching) introduction to the cryo‐chamber of the SEM. Pre‐etching was used to smooth surfaces, whilst etching stripped away layers from the specimen surface, aiding the location of particles in situ, and allowing embedded structures to be revealed. X‐ray analysis was used to determine the composition of localized impurities, which in some cases had been concentrated on the surface by etching. Examining uncoated surfaces was found to be advantageous and did not detract from qualitative X‐ray analysis. Imaging uncoated was performed at low accelerating voltages and probe currents to avoid problems of surface charging.  相似文献   

17.
Dynamic electrochemical etching technique is optimized to produce tungsten tips with controllable shape and radius of curvature of less than 10 nm. Nascent features such as "dynamic electrochemical etching" and reverse biasing after "drop-off" are utilized, and "two-step dynamic electrochemical etching" is introduced to produce extremely sharp tips with controllable aspect ratio. Electronic current shut-off time for conventional dc "drop-off" technique is reduced to ~36 ns using high speed analog electronics. Undesirable variability in tip shape, which is innate to static dc electrochemical etching, is mitigated with novel "dynamic electrochemical etching." Overall, we present a facile and robust approach, whereby using a novel etchant level adjustment mechanism, 30° variability in cone angle and 1.5 mm controllability in cone length were achieved, while routinely producing ultra-sharp probes.  相似文献   

18.
《Lubrication Science》2017,29(5):317-333
Surface lubricity on TiO2‐coated galvanised steels can be controlled by solution depositing perfluorooctanoic ( C8 ), lauric ( C12 ) or stearic ( C18 ) acids to avoid lubricating oils/emulsions or substrate pre‐etching to remove surface oxide that add cost and waste. Water contact angles reveal increased surface hydrophobicity on coated samples that correlate with linear friction testing, suggesting water contact angle can be used to screen lubricity compounds. Linear friction testing shows that C12 and C18 lower the coefficient of friction (μ ) by 50–60% compared with uncoated substrates whilst C8 drops μ from 0.31 to 0.22. Surfaces have been characterised by X‐ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy, whilst infrared confirms that as‐deposited coatings contain physisorbed and deprotonated acids chemisorbed through esters and thermal gravimetric analysis confirms increasing loadings from C8 to C12 to C18 . Surface washing removes physisorbed material and lowers μ by increasing surface organisation and alkyl chain packing that enhances frictional energy dissipation through steric quenching. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The objective of this study was to investigate the significant characteristics in the sprays of industrial etching nozzles for the sake of process design. The experiment was carried out with different spray pressures and industrial nozzles in the spray etching. Characteristics of the spray, such as the axial velocity and the Sauter mean diameter (SMD), were obtained through the Phase-Doppler Anemometer (PDA). The impact force was calculated through the spray characteristics. It was found that liquid with higher spray pressure resulted in a smaller SMD, higher droplet velocity, and greater impact force. The depth of etching was increased in the case of higher spray pressure. When the spray angle oscillated between 20° and −20°, the effect of etching remained constant. The relationships between the spray characteristics and the etching characteristics were analyzed. The depth of etching had significant, positive correlations with the axial velocity and the impact force. Four liquids of different kinematic viscosities were used to reveal the effects of the kinematic viscosity on the spray characteristics. The results indicated that a lower viscosity of the spray yielded a higher etching rate than a higher viscosity of the liquid. The results clearly show that the characteristics of the spray etching are strongly related to the spray characteristics with the spray conditions.  相似文献   

20.
Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to approximately 55-60 degrees C as output powers reach approximately 50 nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of approximately 450 nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4+/-1.7 and 20.7+/-6.9 mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes ( approximately 15 degrees for etched and approximately 6 degrees for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of approximately 6 microm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号