共查询到17条相似文献,搜索用时 80 毫秒
1.
形变模型是基于三维人脸原型库的人脸建模方法。因为该模型具有自动化、真实感好等优点,成为近年来人脸建模研究的热点。该文回顾了形变模型建立的过程,总结了近几年对于形变模型研究的新进展,并对形变模型发展进行了展望。 相似文献
2.
论文提出了一种新的基于三维人脸形变模型,并兼容于MPEG-4的三维人脸动画模型。采用基于均匀网格重采样的方法建立原型三维人脸之间的对齐,应用MPEG-4中定义的三维人脸动画规则,驱动三维模型自动生成真实感人脸动画。给定一幅人脸图像,三维人脸动画模型可自动重建其真实感的三维人脸,并根据FAP参数驱动模型自动生成人脸动画。 相似文献
3.
基于形变模型的三维人脸重建方法及其改进 总被引:16,自引:0,他引:16
形变模型(morphable model)是近几年出现的三维人脸建模新方法.该方法使用原型人脸的组合表示新的人脸,对于特定人脸图像,通过模型匹配实现了三维人脸的自动重建.虽然形变模型具有自动化、真实感好等优点,但现有形变模型的建立依赖于不稳定的人脸图像对应光流算法,模型匹配只考虑了一般光照环境下的人脸重建问题,且建模计算量大.针对以上问题,文章对形变模型进行了改进:提出了网格重采样的方法,实现了模型人脸数据的精确对应;建立了多分辨率的三维人脸模型;在模型匹配过程中采用了多光源光照模型,使模型可适用于复杂光照环境下的人脸重建.实验结果表明,上述改进可以有效提高模型匹配的效率和准确性以及模型对光照的适应性. 相似文献
4.
改进的基于形变模型的三维人脸建模方法 总被引:14,自引:2,他引:14
提出了基于均匀网格重采样算法的原型三维人脸对应算法. 基于人脸特征实现原型三维人脸之间的对应, 克服了传统对应算法对应效果差,算法精度低的缺陷;提出了基于改进遗传算法的形变模型匹配算法. 新的匹配算法不依赖于目标函数的梯度信息和初值,全局搜索能力强. 优化过程中交叉和变异概率的调节机制,有效提高了算法的收敛速度和精度. 实验结果表明,新的对应算法可有效实现原型三维人脸之间的对应,提高形变模型的精度. 新的匹配算法能有效提高模型匹配的效率和精度,缩短模型匹配时间. 相似文献
5.
基于图像的二维人脸识别技术日趋成熟,但仍受光照、姿态和表情等变化的影响。利用三维人脸模型提高人脸识别性能并将其应用于实际成为近几年学术界的研究趋势。本文提出了SWJTU-MF多模人脸数据库(SWJTU multimodal face database, SWJTU-MF Database),包
含200个中性表情中国人的4种人脸样本数据,包括可见光图像、二维视频序列、三维人脸(高精度)和立体视频序列。本文首先分类介绍现有的三维人脸识别算法,然后概述相关的多模人脸数据库,接着提出SWJTU-MF多模人脸数据库,并说明数据库的采集装置、采集环境、采集过程及数据内容,随后简要展示数据标准化过程。最后讨论本数据库面向的应用研究,并给出SWJTU-MF建议的评测协议。 相似文献
6.
根据人脸数据库发展至今的历史,划分了人脸数据库发展的2个主要历史时期,介绍了这2个历史时期中一些典型的人脸数据库,以此归纳出这2个历史时期中人脸数据库的主要特点.通过列举人脸数据库在不同历史阶段发展时产生的变化并加以分析,总结出了这些变化发生的原因.同时还依据人脸数据库发展的特点,提出了一些未来可能出现并发展的人脸数据... 相似文献
7.
形变模型是当前人脸重建研究中的一种主要方法。针对形变模型方法中模型构建的缺陷,提出一种基于压缩感知理论的快速三维人脸重建方法。首先,利用压缩感知理论估计三维原型人脸与目标人脸的形状相似性,根据相似性对原型样本进行筛选并构建相应的形变模型,提高建模精度和效率;然后,利用特征点信息进行稀疏模型匹配,并结合径向基函数插值重建生成特定的三维人脸,提高重建表面的平滑性。在BJUT三维数据库和CAS_PEAL二维数据库上的实验结果表明,与经典方法相比,本文方法能够有效地提高重建精度和速度,重建人脸具有较强真实感。 相似文献
8.
现有的三维人脸建模方法存在三点不足:建模条件苛刻、建模精度不高和建模时间长。针对以上不足,提出明暗恢复形状(SFS)和局部形变模型融合的3D人脸建模方法。该方法利用SFS快速恢复3D人脸粗糙数据,得到3D轮廓脸;然后分别对人脸不同局部应用形变模型恢复其局部3D精确数据,并使用其对轮廓脸进行内插平滑处理重建出高精度3D人脸模型。实验结果表明:该方法能够获得较好的建模精度,在短时间内可以通过单幅真实图像重建出个性化的三维人脸模型。 相似文献
9.
现有人脸纹理重建方法对于人脸的皱纹、胡须、瞳孔颜色等重建效果往往不够细致.为了解决此问题,文中提出基于人脸标准化的纹理和光照保持3D人脸重构.首先对2D人脸图像标准化,使用光照信息和对称纹理重构人脸自遮挡区域的纹理.然后依据2D-3D点对应关系从标准化的2D人脸图像获取相应的3D人脸纹理,结合人脸形状重构和纹理信息,得到最终的3D人脸重构结果.实验表明文中方法有效保留原始2D图像的纹理和光照信息,重构的人脸更自然,具有更丰富的人脸细节. 相似文献
10.
利用3D人脸建模的方法进行人脸识别有效地克服了2D人脸识别系统中识别率易受光照、姿态、表情影响的缺陷。文章采用一种依据人脸图像对3D通用人脸模型进行自适应调整的有效算法,构造出特定的人脸模型并运用于人脸识别中。通过比较从人脸图像中估算出的特征点与通用人脸模型在图像平面上的投影点之间的关系,对3D通用人脸模型进行全局和局部调整,以适应人脸中眼、口、鼻的个性化特征。最后以一个实例说明了此算法的应用。 相似文献
11.
创建中国人三维人脸库关键技术研究 总被引:4,自引:0,他引:4
通过CyberWare人脸专用扫描仪获取高分辨率的彩色三维人脸来构建中国人三维人脸数据库.创建三维人脸数据库时,要对原始三维人脸数据进行预处理,并通过规格化将三维人脸表示为统一的标准形式.规格化的关键是要建立三维人脸数据基于特征的稠密对应,这是图形学和计算机视觉中的难点问题,目前使用光流方法建立的对应效果并不理想,因此提出了基于网格重采样的计算方法,取得了良好的对应效果. 相似文献
12.
13.
14.
15.
人脸识别是生物特征识别技术的一个重要方向。虽然目前大部分研究都还只是针对二维人脸图像,但是3D人脸模型包含更丰富的人脸信息,有助于机器对人脸的识别。从二维到三维,人脸识别研究进入了一个新的阶段。从3D人脸数据的获取方式入手,介绍最近提出的一系列3D人脸识别算法,并进行归类。最后提出"有针对性地获取3D人脸模型数据是进行有效识别的基础"这一结论。 相似文献
16.
三维人脸相较于二维人脸包含了更多特征信息,可应用于如人脸识别、影视娱乐、医疗美容等更多实际应用场景,因此三维人脸重建技术一直是计算机视觉领域的研究热点.由于真实三维人脸数据较难获取,很多基于深度学习的重建算法首先利用传统重建方法为大量二维人脸图像构建三维标签,作为训练数据,这些数据可能并不精准,从而导致算法的重建精度受到影响.为此,本文提出一种基于multi-level损失函数的弱监督学习模型,结合传统三维人脸形变模型3DMM与深度学习方法,直接从大量无三维标签的二维人脸图像中学习三维人脸特征信息,从而实现基于单张二维人脸图像的三维人脸重建算法.此外,为解决二维人脸图像中常存在遮挡或大姿态情况而影响人脸纹理重建的问题,本文使用基于CelebAMask-HQ数据集的人脸解析分割算法对图像进行预处理去除遮挡区域.实验结果表明,基于本文方法的三维人脸重建质量与重建精度均实现了一定的提升. 相似文献