首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report recent results on a 20% reduced height 270–425 GHz SIS waveguide receiver employing a 0.49 µm2 Nb/AlO x /Nb tunnel junction. A 50% operating bandwidth is achieved by using a RF compensated junction mounted in a two-tuner reduced height waveguide mixer block. The junction uses an “end-loaded” tuning stub with two quarter-wave transformer sections. We demonstrate that the receiver can be tuned to give 0–2 dB of conversion gain and 50–80% quantum efficiency over parts of it's operating range. The measured instantaneous bandwidth of the receiver is ≈ 25 GHz which ensures virtually perfect double sideband mixer response. Best noise temperatures are typically obtained with a mixer conversion loss of 0.5 to 1.5 dB giving uncorrected receiver and mixer noise temperatures of 50K and 42K respectively at 300 and 400 GHz. The measured double sideband receiver noise temperature is less than 100K from 270 GHz to 425 GHz with a best value of 48K at 376 GHz, within a factor of five of the quantum limit. The 270–425 GHz receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii. Preliminary tests of a similar junction design in a full height 230 GHz mixer block indicate large conversion gain and receiver noise temperatures below 50K DSB from 200–300 GHz. Best operation is again achieved with the mixer tuned for 0.5–1.5 dB conversion loss which at 258 GHz resulted in receiver and mixer noise temperature of 34K and 27K respectively.  相似文献   

2.
A heterodyne waveguide receiver employing 1 µm2 Nb superconducting tunnel junctions with on chip integrated tuning structures is characterized from 680–760 GHz. Several different types of integrated tuning structures are investigated. Lowest DSB receiver noise temperatures of 310 K at 709 GHz and 400 K at 720 GHz are measured. Analysis of the data shows that the loss of the superconducting tuning structures has a major influence on the overall receiver performance. A 25% reduction in receiver noise temperature is observed if the mixer is cooled from 4.2 K to 2 K, which we attribute to the reduced loss of the superconducting microstrip lines at lower temperatures. The calculated performance of the different tuning structures is shown to be in good agreement with the actual receiver noise measurements.  相似文献   

3.
A mechanically tunable SIS receiver covering the frequency range from 125 to 170 GHz is described. For cooling at 2.8 K, a closed cycle refrigeration system has been developed that has a cooling power of 350 mW at 2.8 K. The IF is centered at 1.4 GHz with a bandwidth of 600 MHz. For preamplification, a cryogenic 2-stage HEMT amplifier has been developed that has a noise temperature of about 7 K. The best narrow-band spot noise temperature of the receiver is 28 K (DSB) at 133 GHz. Typical broadband (600MHz) values are between 50 and 200 K depending on the frequency. The receiver is used for radioastronomical measurements at the Cologne 3-m radiotelescope.  相似文献   

4.
Arrays of six superconducting tunnel junctions have been used in a heterodyne receiver over the frequency range 35–50 GHz. The mixer array and a 3.7–4.2 GHz parametric amplifier used as the if amplifier are immersed in liquid helium and operated at 2 K. The high if allows single sideband operation with a system noise temperature varying rather smoothly from 220 K at 35 GHz to 140 K at 50 GHz. Mixer noise temperatures between 11 and 21 K were measured over the band indicating that the use of arrays to enhance the dynamic range does not seriously affect the mixer noise performance in this frequency range. The receiver is used for radio astronomical observations in the Onsala 20 m telescope in Sweden.  相似文献   

5.
We describe the design and performance of a 210–280 GHz SIS heterodyne receiver built for use on the Maxwell Telescope. The mixer utilises a lead alloy SIS tunnel junction, mounted in 4∶1 reduced height rectangular waveguide, and is tuned with a backshort in 2∶1 reduced height guide. The receiver has a receiver noise temperature of <200K (DSB) across the RF band from 210–270 GHz, with a best noise temperature measured in the laboratory of 113K (DSB) at 231 GHz. A prototype version of this receiver was successfully operated on the telescope in May 1989. By direct intercalibration with a Schottky diode receiver we deduced a best receiver noise temperature of 140K (DSB) at 245 GHz. Discrepancies between this figure and that derived from broad band thermal load calibration are discussed in the accompanying paper (Little et al., 1992, this issue).  相似文献   

6.
A heterodyne receiver based on a ~1/3 reduced height rectangular waveguide SIS mixer with two mechanical tuners has been built for astronomical observations of molecular transitions in the 230 GHz frequency band. The mixer used an untuned array (ωRnCj≈3, Rn≈70 Ω) of four Nb/AIOx/Nb tunnel junctions in series as a nonlinear mixing element. A reasonable balance between the input and output coupling efficiencies has been obtained by choosing the junction number N=4. The receiver exhibits DSB (Double Side Band) noise temperature around 50 K over a frequency range of more than 10 GHz centered at 230 GHz. The lowest system noise temperature of 38 K has been recorded at 232.5 GHz. Mainly by adjusting the subwaveguide backshort, the SSB (Single Side Band) operation with image rejection of ≥ 15 dB is obtained with the noise temperature as low as 50 K. In addition, the noise contribution from each receiver component has been studied further. The minimum SIS mixer noise temperature is estimated as 15 K, pretty close to the quantum limit ?v/k~11 K at 230 GHz. It is believed that the receiver noise temperatures presented are the lowest yet reported for a 230 GHz receiver using untuned junctions.  相似文献   

7.
We have developed a heterodyne receiver incorporating an SIS mixer for use on a radiotelescope operating at 1.3 mm wavelength. The mixer has a minimum conversion loss of <2 dB and contributes less than 60 K to a total double side band receiver noise temperature of about 80 K at 220 GHz and 230 GHz. To our knowledge this represents the lowest receiver noise ever reported in this frequency range.  相似文献   

8.
We report recent results on a 565–690 GHz SIS heterodyne receiver employing a 0.36µm2 Nb/AlO x /Nb SIS tunnel junction with high quality circular non-contacting backshort and E-plane tuners in a full height waveguide mount. No resonant tuning structures have been incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, ≈ 680 GHz. Typical receiver noise temperatures from 565–690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15%, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii.  相似文献   

9.
The authors report recent results for a full-height rectangular waveguide mixer with an integrated IF matching network. Two 0.25 μm 2 Nb-AlOx-Nb superconducting-insulating-superconducting (SIS) tunnel junctions with a current density of ≈8500 A/cm2 and ωRC of ≈2.5 at 230 GHz have been tested. One of these quasiparticle tunnel junctions is currently being used at the Caltech Submillimeter Observatory in Hawaii. Detailed measurement of the receiver noise have been made from 200-290 GHz for both junctions at 4.2 K. The lowest receiver noise temperatures were recorded at 239 GHz, measuring 48 K DSB at 4.2 K and 40 K DSB at 2.1 K. The 230-GHz receiver incorporates a one-octave-wide integrated low-pass filter and matching network which transforms the pumped IF junction impedance to 50 Ω over a wide range of impedances  相似文献   

10.
We have designed and fabricated a fixed tuned low noise 600-700 GHz SIS mixer. Twin junctions connected in parallel was employed in the mixer design. A short microstrip tuning structure was used to minimize the RF signal loss at frequency above the energy gap. A receiver noise temperature below 200 K (without any loss correction) in the frequency range of 630 to 660 GHz was recorded. The lowest noise temperature of the receiver was 181 K (without any loss correction) at 656 GHz.  相似文献   

11.
We developed a low noise dual channel receiver with 100GHz and 150GHz band, which is used to make the simultaneous observation with two bands. The SIS mixers are used in both bands. The constructed dewar for the receiver has a performance with a vacuum of 10?8torr and a temperature of 4.2K. The receiver noise temperature is 50K(DSB) for 100GHz band and 80K(DSB) for 150GHz band, respectively. In order to achieve the simultaneous observations, the quasioptical system is precisely designed, and also evaluated by measurements in the laboratory. The relative pointing offset between two bands is 3″. We have observed the various sources using the receiver since October 1998.  相似文献   

12.
We report on a 850-GHz superconducting-insulator-superconducting (SIS) heterodyne receiver employing an RF-tuned niobium tunnel junction with a current density of 14 kA/cm2, fabricated on a 1-μm Si3N4 supporting membrane. Since the mixer is designed to be operated well above the superconducting gap frequency of niobium (2Δ/h≈690 GHz), special care has been taken to minimize niobium transmission-line losses. Both Fourier transform spectrometer (FTS) measurements of the direct detection performance and calculations of the IF output noise with the mixer operating in heterodyne mode, indicate an absorption loss in the niobium film of about 6.8 dB at 822 GHz. These results are in reasonably good agreement with the loss predicted by the Mattis-Bardeen theory in the extreme anomalous limit. From 800 to 830 GHz, we report uncorrected receiver noise temperatures of 518 or 514 K when we use Callen and Welton's law to calculate the input load temperatures. Over the same frequency range, the mixer has a 4-dB conversion loss and 265 K±10 K noise temperature. At 890 GHz, the sensitivity of the receiver has degraded to 900 K, which is primarily the result of increased niobium film loss in the RF matching network. When the mixer was cooled from 4.2 to 1.9 K, the receiver noise temperature improved about 20% 409-K double sideband (DSB). Approximately half of the receiver noise temperature improvement can be attributed to a lower mixer conversion loss, while the remainder is due to a reduction in the niobium film absorption loss. At 982 GHz, we measured a receiver noise temperature of 1916 K  相似文献   

13.
A millimeter-wave cryogenic receiver has been built for the 60-90-GHz frequency band using GaAs mixer diodes prepared by molecuIar beam epitaxy (MBE). The diodes are mounted in a reduced-height image rejecting waveguide mixer which is followed by a cooled parametric amplifier at 4.5-5.0 GHz. At a temperature of 18 K the receiver has a total single-sideband (SSB) system temperature of 312 K at a frequency of 81 GHz. This is the lowest system temperature ever reported for a resistive mixer receiver. The low-noise operation of the mixer is seen to be a result of 1) the short-circuiting of the noise entering the image port and 2) an MBE mixer diode with a noise temperature which is consistent with the theoretical shot noise from the junction and the thermal noise from the series resistance.  相似文献   

14.
Low-noise all solid-state receiver systems for room temperature and cryogenic operation between 210 and 240 GHz are described. The receivers incorporate a single-ended fixed tuned Schottky barrier diode mixer, a frequency-tripled Gunn source as local oscillator and a GaAsFET IF amplifier. Single sideband receiver noise temperatures are typically 1300 K (7.39-dB noise figure) for a room temperature system and 470 K (4.18-dB noise figure) for a cryogenically cooled receiver operating at 20 K.  相似文献   

15.
A heterodyne receiver using an SIS waveguide mixer with two mechanical tuners has been characterized from 480 GHz to 650 GHz. The mixer uses either a single 0.5 × 0.5 µm2 Nb/AlOx/Nb SIS tunnel junction or a series array of two 1 µm2 Nb tunnel junctions. These junctions have a high current density, in the range 8 – 13 kA/cm2. Superconductive RF circuits are employed to tune the junction capacitance. DSB receiver noise temperatures as low as 200 ± 17 K at 540 GHz, 271 K ± 22 K at 572 GHz and 362 ± 33 K at 626 GHz have been obtained with the single SIS junctions. The series arrays gave DSB receiver noise temperatures as low as 328 ± 26 K at 490 GHz and 336 ± 25 K at 545 GHz. A comparison of the performances of series arrays and single junctions is presented. In addition, negative differential resistance has been observed in the DC I–V curve near 490, 545 and 570 GHz. Correlations between the frequencies for minimum noise temperature, negative differential resistance, and tuning circuit resonances are found. A detailed model to calculate the properties of the tuning circuits is discussed, and the junction capacitance as well as the London penetration depth of niobium are determined by fitting the model to the measured circuit resonances.  相似文献   

16.
We present the design and experimental data of an SIS waveguide mixer for frequencies from 760 to 820 GHz. We use a Nb-Al2O3-Nb junction with an integrated niobium tuning structure. The waveguide mixer block contains no adjustable tuning elements. Design criteria for lossy tuning structures, differing from the impedance matching techniques used in the lossless case, are described. We separate the influence of the intrinsic mixing properties of an SIS junction from the effects of the power coupling to the signal source on the overall noise. This allows us to derive the contributions of the optics, the losses in the stripline and the noise generated in the junction to the total receiver noise from the measurements. We achieve double sideband receiver noise temperatures of around 850 K at frequencies from 780 to 820 Ghz and 4.2 K operating temperature of the mixer. Cooling the mixer to 2.5 K results in an improvement of the receiver noise temperature by 150 to 200 K. The bandwidth is presently limited by the local oscillator. The mixer was successfully used in a dual channel receiver (440 to 490 GHz and 780 to 820 GHz) at the Submillimeter Telescope Observatory (SMTO) on Mount Graham, Arizona.  相似文献   

17.
We present a SIS mixer developed for 200 – 250 GHz band receivers of Plateau de Bure Interferometer. We demonstrate the minimum DSB receiver noise of 20 K at 220 GHz. The average receiver noise of 25 K is possible in 200 – 250 GHz range. The receiver conversion gain and output noise instability of 10?4 on the time scale of 1 minute is comparable with the Shottky receivers performance. The minimum measured SIS mixer noise of about 10 K is close to the quantum limit. The waveguide SIS mixer with a single backshort has two junction array with inductively tuned junctions. The Nb/Al Oxide/Nb SIS junctions are 2.24 µm2 each with the Josephson critical current density of 3.2 KA/cm2. The thermal properties of the SIS mixer are studied. The mixer band of the low noise operation is in a good agreement with the design requirements.  相似文献   

18.
We report on a 275-425-GHz tunerless waveguide receiver with a 3.5-8-GHz IF. As the mixing element, we employ a high-current-density Nb-AlN-Nb superconducting-insulating-superconducting (SIS) tunnel junction. Thanks to the combined use of AlN-barrier SIS technology and a broad bandwidth waveguide to thin-film microstrip transition, we are able to achieve an unprecedented 43% instantaneous bandwidth, limited by the receiver's corrugated feedhorn. The measured double-sideband (DSB) receiver noise temperature, uncorrected for optics loss, ranges from 55 K at 275 GHz, 48 K at 345 GHz, to 72 K at 425 GHz. In this frequency range, the mixer has a DSB conversion loss of 2.3 plusmn1 dB. The intrinsic mixer noise is found to vary between 17-19 K, of which 9 K is attributed to shot noise associated with leakage current below the gap. To improve reliability, the IF circuit and bias injection are entirely planar by design. The instrument was successfully installed at the Caltech Submillimeter Observatory (CSO), Mauna Kea, HI, in October 2006.  相似文献   

19.
A quasi-optical heterodyne receiver using a Pb-alloy superconductor-insulator-superconductor (SIS) tunnel junction as the detector and a planar logarithmic spiral antenna for the RF coupling is described, and its performance is compared with the predicted performance of a theoretical model. Noise measurements were made in the laboratory at frequencies between 115 GHz and 761 GHz, yielding double-sideband noise temperatures ranging from 33 K to 1100 K. The receiver has also been used for astronomical spectroscopy on the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) at 115, 230, 345, and 492 GHz  相似文献   

20.
The paper describes an uncooled front-end of the Schottky diode receiver system, which may be applied for observations of middle atmospheric ozone and carbon monoxide thermal emission lines at frequencies 110.8 GHz and 115.3 GHz, respectively. The mixer of the front-end has utilized high-quality Schottky diodes that allowed us to reduce the mixer conversion loss. The combination of the mixer and an ultra-low-noise IF amplifier in the one integrated unit has resulted in double-sideband (DSB) receiver noise temperature of 260 K at a local oscillator (LO) frequency of 113.05 GHz in the instantaneous IF band from 1.7 to 2.7 GHz. This is the lowest noise temperature ever reported for an uncooled ozone receiver system with Schottky diode mixers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号