首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have previously reported that ingenol derivatives are highly potent inhibitors of human immunodeficiency virus type 1 (HIV-1) replication in acutely infected cells. In this study, however, we have found that some ingenol derivatives strongly enhance the replication of HIV-1 in chronically infected cells at nanomolar concentrations. One of the derivatives could activate nuclear factor kappa B (NF-kappa B), a potent inducer of HIV-1 replication, through the activation of protein kinase C (PKC). Whereas another derivative, which affected neither PKC nor NF-kappa B, significantly enhanced HIV-1 replication, suggesting that a PKC-independent mechanism may also exist in ingenol derivative-induced HIV-1 upregulation.  相似文献   

4.
We have examined the feasibility of using interferon (IFN) gene transfer as a novel approach to anti-human immunodeficiency virus type 1 (HIV-1) therapy in this study. To limit expression of a transduced HIV-1 long terminal repeat (LTR)-IFNA2 (the new approved nomenclature for IFN genes is used throughout this article) hybrid gene to the HIV-1-infected cells, HIV-1 LTR was modified. Deletion of the NF-kappa B elements of the HIV-1 LTR significantly inhibited Tat-mediated transactivation in T-cell lines, as well as in a monocyte line, U937. Replacement of the NF-kappa B elements in the HIV-1 LTR by a DNA fragment derived from the 5'-flanking region of IFN-stimulated gene 15 (ISG15), containing the IFN-stimulated response element, partially restored Tat-mediated activation of LTR in T cells as well as in monocytes. Insertion of this chimeric promoter (ISG15 LTR) upstream of the human IFNA2 gene directed high levels of IFN synthesis in Tat-expressing cells, while this promoter was not responsive to tumor necrosis factor alpha-mediated activation. ISG15-LTR-IFN hybrid gene inserted into the retrovirus vector was transduced into Jurkat and U937 cells. Selected transfected clones produced low levels of IFN A (IFNA) constitutively, and their abilities to express interleukin-2 and interleukin-2 receptor upon stimulation with phytohemagglutinin and phorbol myristate acetate were retained. Enhancement of IFNA synthesis observed upon HIV-1 infection resulted in significant inhibition of HIV-1 replication for a period of at least 30 days. Virus isolated from IFNA-producing cells was able to replicate in the U937 cells but did not replicate efficiently in U937 cells transduced with the IFNA gene. These results suggest that targeting IFN synthesis to HIV-1-infected cells is an attainable goal and that autocrine IFN synthesis results in a long-lasting and permanent suppression of HIV-1 replication.  相似文献   

5.
The global diversity of human immunodeficiency virus type 1 (HIV-1) genotypes, termed subtypes A to J, is considerable and growing. However, relatively few studies have provided evidence for an associated phenotypic divergence. Recently, we demonstrated subtype-specific functional differences within the long terminal repeat (LTR) region of expanding subtypes (M. A. Montano, V. A. Novitsky, J. T. Blackard, N. L. Cho, D. A. Katzenstein, and M. Essex, J. Virol. 71:8657-8665, 1997). Notably, all HIV-1E isolates were observed to contain a defective upstream NF-kappaB site and a unique TATA-TAR region. In this study, we demonstrate that tumor necrosis factor alpha (TNF-alpha) stimulation of the HIV-1E LTR was also impaired, consistent with a defective upstream NF-kappaB site. Furthermore, repair of the upstream NF-kappaB site within HIV-1E partially restored TNF-alpha responsiveness. We also show, in gel shift assays, that oligonucleotides spanning the HIV-1E TATA box displayed a reduced efficiency in the assembly of the TBP-TFIIB-TATA complex, relative to an HIV-1B TATA oligonucleotide. In transfection assays, the HIV-1E TATA, when changed to the canonical HIV-1B TATA sequence (ATAAAA-->ATATAA) unexpectedly reduces both heterologous HIV-1B Tat and cognate HIV-1E Tat activation of an HIV-1E LTR-driven reporter gene. However, Tat activation, irrespective of subtype, could be rescued by introducing a cognate HIV-1B TAR. Collectively, these observations suggest that the expanding HIV-1E genotype has likely evolved an alternative promoter configuration with altered NF-kappaB and TATA regulatory signals in contradistinction with HIV-1B.  相似文献   

6.
7.
8.
Human immunodeficiency virus type 1 (HIV-1)-infected subjects show a high incidence of Epstein-Barr virus (EBV) infection. This suggests that EBV may function as a cofactor that affects HIV-1 activation and may play a major role in the progression of AIDS. To test this hypothesis, we generated two EBV-negative human B-cell lines that stably express the EBNA2 gene of EBV. These EBNA2-positive cell lines were transiently transfected with plasmids that carry either the wild type or deletion mutants of the HIV-1 long terminal repeat (LTR) fused to the chloramphenicol acetyltransferase (CAT) gene. There was a consistently higher HIV-1 LTR activation in EBNA2-expressing cells than in control cells, which suggested that EBNA2 proteins could activate the HIV-1 promoter, possibly by inducing nuclear factors binding to HIV-1 cis-regulatory sequences. To test this possibility, we used CAT-based plasmids carrying deletions of the NF-kappa B (pNFA-CAT), Sp1 (pSpA-CAT), or TAR (pTAR-CAT) region of the HIV-1 LTR and retardation assays in which nuclear proteins from EBNA2-expressing cells were challenged with oligonucleotides encompassing the NF-kappa B or Sp1 region of the HIV-1 LTR. We found that both the NF-kappa B and the Sp1 sites of the HIV-1 LTR are necessary for EBNA2 transactivation and that increased expression resulted from the induction of NF-kappa B-like factors. Moreover, experiments with the TAR-deleted pTAR-CAT and with the tat-expressing pAR-TAT plasmids indicated that endogenous Tat-like proteins could participate in EBNA2-mediated activation of the HIV-1 LTR and that EBNA2 proteins can synergize with the viral tat transactivator. Transfection experiments with plasmids expressing the EBNA1, EBNA3, and EBNALP genes did not cause a significant HIV-1 LTR activation. Thus, it appears that among the latent EBV genes tested, EBNA2 was the only EBV gene active on the HIV-1 LTR. The transactivation function of EBNA2 was also observed in the HeLa epithelial cell line, which suggests that EBV and HIV-1 infection of non-B cells may result in HIV-1 promoter activation. Therefore, a specific gene product of EBV, EBNA2, can transactivate HIV-1 and possibly contribute to the clinical progression of AIDS.  相似文献   

9.
Cepharanthine is a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata and has been shown to have antiinflammatory, antiallergic, and immunomodulatory activities in vivo. As several inflammatory cytokines and oxidative stresses are involved in the pathogenesis of HIV-1 infection, we investigated the inhibitory effects of cepharanthine on tumor necrosis factor alpha (TNF-alpha)- and phorbol 12-myristate 13-acetate (PMA)-induced HIV-1 replication in chronically infected cell lines. Two chronically HIV-1-infected cell lines, U1 (monocytic) and ACH-2 (T lymphocytic), were stimulated with TNF-alpha or PMA and cultured in the presence of various concentrations of the compound. HIV-1 replication was determined by p24 antigen level. The inhibitory effects of cepharanthine on HIV-1 long terminal repeat (LTR)-driven gene expression and nuclear factor kappaB (NF-kappaB) activation were also examined. Cepharanthine dose dependently inhibited HIV-1 replication in TNF-alpha- and PMA-stimulated U1 cells but not in ACH-2 cells. Its 50% effective and cytotoxic concentrations were 0.016 and 2.2 microg/ml in PMA-stimulated U1 cells, respectively. Cepharanthine was found to suppress HIV-1 LTR-driven gene expression through the inhibition of NF-kappaB activation. These results indicate that cepharanthine is a highly potent inhibitor of HIV-1 replication in a chronically infected monocytic cell line. Since biscoclaurine alkaloids, containing cepharanthine as a major component, are widely used for the treatment of patients with various inflammatory diseases in Japan, cepharanthine should be further pursued for its chemotherapeutic potential in HIV-1-infected patients.  相似文献   

10.
cDNAs encoding the bovine immunodeficiency virus (BIV) transactivator gene (tat) were cloned from virally infected cells and characterized. BIV expresses two distinct tat mRNAs composed of three exons that are derived by alternative splicing. The BIV tat mRNA splice variants encode Tat proteins of 103 (Tat103) and 108 (Tat108) amino acids. The Tat103 coding region is specified only by exon 2, while that of Tat108 is specified by a truncated exon 2 and the first 30 nt of exon 3. Thus, the first 98 amino acids of each Tat are identical, and have amino terminal, cysteine-rich, conserved core, basic, and carboxyl-terminal domains similar to Tats encoded by primate lentiviruses. BIV-infected bovine cells express a 14-kDa phosphorylated Tat protein identical in size to recombinant Tat expressed in bacteria. BIV Tat was shown to localize exclusively in the nucleoli of virally infected and Tat-expressing cells. Reporter gene assays indicated that Tat103 and Tat108 can strongly transactivate the BIV long terminal repeat (LTR) in virally permissive canine Cf2Th and nonpermissive HeLa and mouse NIH 3T3 cells, but not in permissive lapine EREp cells. However, an intact BIV tat gene is required for viral replication in both Cf2Th and EREp cells. Strong LTR activation by BIV Tat requires a TAR (transactivation responsive) element delimited by viral nt +1 to +31 and the Tat basic domain. BIV Tat strongly cross-transactivates the HIV-1 LTR in a TAR-dependent manner in Cf2Th, but not in EREp, HeLa, or NIH 3T3 cells. In contrast, strong, TAR-dependent cross-transactivation of the BIV LTR by HIV-1 Tat could not be demonstrated in any of these cell types. In Cf2Th cells Tat108 effects a moderately stronger transactivation of the BIV LTR than Tat103, indicative of a functional difference in BIV Tat proteins encoded by the mRNA splice variants. The present studies demonstrate that BIV Tat parallels the primate lentiviral Tats in structure and biochemistry but is not interchangeable with the latter.  相似文献   

11.
12.
HIV-1 and HIV-2 are co-endemic in certain geographic areas. HIV-2 is more weakly pathogenic than HIV-1, and progression to AIDS occurs less frequently and over a longer period of time. Recent epidemiologic studies suggest that individuals infected with HIV-2 have a lower risk of HIV-1 infection. Both immune mechanisms and various modes of viral interference have been proposed to account for these results. Our findings, described in this paper, suggest that HIV-2 inhibits HIV-1 replication. To study the molecular interactions between HIV-1 and HIV-2, proviral clones were transfected alone or in combination into the human T cell line CEM. LTR-CAT indicator constructs were included for the purpose of monitoring viral promoter activity. Viral replication in transfected cells was monitored by p24 antigen capture assay of cell culture supernatants and Western blot analysis of cell extracts. HIV-2 inhibited HIV-1 replication as determined by intracellular and extracellular p24 antigen levels. Similar results were obtained with simultaneous virus infection using HIV-1 and HIV-2, rather than transfections of proviral DNA. Using cotransfection of HIV-1 and HIV-2 LTR indicator gene constructs, the mechanism of inhibition was found to be suppression of the HIV-1 LTR by HIV-2. The inhibitory effect of HIV-2 is not due to Tat-2, but appears to discriminate between the HIV-1 and HIV-2 LTRs based on differences in the Tat activation response element, TAR. These results suggest both a molecular mechanism for HIV-2 interference with HIV-1 replication and a potential molecular approach to therapy.  相似文献   

13.
The activation of the human immunodeficiency virus, type 1 (HIV-1) by the DNA alkylating agents ethyl methanesulfonate, methyl methanesulfonate, and mitomycin C was observed in human B lymphocytes transiently transfected with plasmids in which the HIV-1 long terminal repeat (LTR) directed the expression of the bacterial chloramphenicol acetyltransferase gene. Deletion of the two NF-kappa B-binding sites of LTR abolished the HIV-1 activation induced by the three mutagens, while deletion of the three Sp1-binding sites slightly reduced it. Electrophoretic mobility shift assays revealed an increased binding to the kappa B sites of HIV-1 LTR in the nuclear extracts of human B lymphocytes upon mutagen treatment, while binding to Sp1 sites was unaffected. The TAR region was also involved in the mutagen-mediated activation of HIV-1 LTR inasmuch as a small deletion in the TAR sequence (nucleotides +34 to +37) greatly decreased the induction of HIV-1 expression. Moreover, an enhanced binding activity to the TAR DNA sequence (nucleotides +24 to +47) was observed in nuclear extracts of mutagen-treated lymphocytes. Thus, both the enhancer and the 5'-untranslated region of HIV-1 functionally cooperate in the mutagen-mediated induction of HIV-1 expression.  相似文献   

14.
15.
HIV-1 Tat is a potent transactivator that stimulates expression from the HIV-1 LTR, from certain cellular gene promoters and from several heterologous viral promoters. Previous reports show that HIV-1 Tat transactivates tumor necrosis factor-beta (TNF-beta) promoter-directed gene expression in lymphocytic and monocytic cell lines and further demonstrate that a 'TAR-like structure' downstream of the TNF-beta promoter is essential for Tat activity. The ability of Tat to activate TNF-beta may have profound effects as TNF has been shown to be a potent activator of HIV-1 gene expression and an important immunomodulatory and growth regulatory factor. The studies presented herein demonstrate a novel finding where HIV-1 Tat specifically represses (> 10-fold) TNF-beta promoter-directed gene expression in central nervous system-derived glial cells. Amino acid residues 2 to 36 of HIV-1 Tat are required for TNF-beta repression. Tat repression of TNF-beta, a factor which upregulates HIV-1 gene expression, suggests a novel mechanism whereby HIV-1 is able to establish latent infection of glial cells that present no detectable virions and/or viral antigens.  相似文献   

16.
17.
Current clinical gene therapy protocols for the treatment of human immunodeficiency virus type 1 (HIV-1) infection often involve the ex vivo transduction and expansion of CD4+ T cells derived from HIV-positive patients at a late stage in their disease (CD4 count <400). These protocols involve the transduction of T cells by murine leukemia virus (MLV)-based vectors encoding antiviral constructs such as the rev m10 dominant negative mutant or a ribozyme directed against the CAP site of HIV-1 RNA. We examined the efficiency and stability of transduction of CD4+ T cells derived from HIV-infected patients at different stages in the progression of their disease, from seroconversion to AIDS. CD4+ T cells from HIV-positive patients and uninfected donors were transduced with MLV-based vectors encoding beta-galactosidase and an intracellular antibody directed against gp120 (sFv 105) or Tat. (sFvtat1-Ckappa). The expression of marker genes and the effects of the antiviral constructs were monitored in vitro in unselected transduced CD4+ T cells. Efficiency and stability of transduction varied during the course of HIV infection; CD4+ T cells derived from asymptomatic patients were transducible at higher efficiencies and stabilities than CD4+ T cells from patients with acquired immunodeficiency syndrome (AIDS). Expression of the anti-tat intracellular antibody was more effective at stably inhibiting HIV-1 replication in transduced cells from HIV-infected individuals than was sFv 105. The results of this study have important implications for the development of a clinically relevant gene therapy for the treatment of HIV-1 infection.  相似文献   

18.
19.
Because human immunodeficiency virus type 1 (HIV-1) infection is characterized by a large number of viral replication cycles and rapid cell turnover in vivo, successful gene therapy requires an approach effective under these conditions. The antitat gene has been proposed for gene therapy because it effectively blocks Tat function and the replication of HIV-1. However, neither antitat nor any other antiviral gene has been shown to inhibit HIV in the presence of high viral load and inflammatory cytokines, a condition closer to the in vivo situation. We show that cells transduced with antitat retrovirus vector are resistant to high multiplicity of HIV infection. In the presence of inflammatory cytokines, including interleukin-1 and tumor necrosis factor, both known to activate viral gene expression independently of Tat, antitat suppressed virus replication. HIV-1 inhibition was observed when cell were treated with a mixture of inflammatory cytokines able to induce acquired immunodeficiency syndrome (AIDS) Kaposi's sarcoma cell growth. These molecules have been shown to be increased in HIV-1-infected individuals, and it is suggested they play a role in the pathogenesis of AIDS. Our results suggest that antitat is effective under conditions present in vivo and therefore a primary candidate for HIV-1 gene therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号