首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This paper presents a new electrostatic discharge (ESD) protection scheme for IC with power-down-mode operation. Adding a VDD ESD bus line and diodes into the proposed ESD protection scheme can block the leakage current from I/O pin to VDD power line and avoid malfunction during power-down operation. The whole-chip ESD protection design can be achieved by insertion of ESD clamp circuits between VSS power line and both the VDD power line and VDD ESD bus line. Experiment results show that the human-body model (HBM) ESD level of this new scheme can be greater than 7.5 kV in a 0.35-/spl mu/m silicided CMOS process.  相似文献   

2.
A whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits is proposed to provide a real whole-chip ESD protection for submicron CMOS IC's without causing unexpected ESD damage in the internal circuits. The efficient VDD-to-VSS ESD clamp circuit has been designed to provide a low-impedance path between the VDD and VSS power lines of the IC during the ESD-stress condition, but this ESD clamp circuit is kept off when the IC is under its normal operating condition. Due to the parasitic resistance and capacitance along the VDD and VSS power lines, the ESD-protection efficiency is dependent on the pin location on a chip. Therefore, an experimental test chip has been designed and fabricated to build up a special ESD design rule for whole-chip ESD protection in a 0.8-μm CMOS technology. This whole-chip ESD protection design has been practically used to rescue a 0.8-μm CMOS IC product with a pin-to-pin HBM ESD level from the original level of 0.5 kV to become above 3 kV  相似文献   

3.
To provide area-efficient output ESD protection for the scaled-down CMOS VLSI, a new output ESD protection is proposed. In the new output ESD protection circuit, there are two novel devices, the PTLSCR (PMOS-trigger lateral SCR) and the NTLSCR (NMOS-trigger lateral SCR). The PTLSCR is in parallel and merged with the output PMOS, and the NTLSCR is in parallel and merged with the output NMOS, to provide area-efficient ESD protection for CMOS output buffers. The trigger voltages of PTLSCR and NTLSCR are lowered below the breakdown voltages of the output PMOS and NMOS in the CMOS output buffer. The PTLSCR and NTLSCR are guaranteed to be turned on first before the output PMOS or NMOS are broken down by the ESD voltage. Experimental results have shown that the PTLSCR and NTLSCR can sustain over 4000 V (700 V) of the human-body-model (machine-model) ESD stresses within a very small layout area in a 0.6 μm CMOS technology with LDD and polycide processes. The noise margin of the proposed output ESD protection design is greater than 8 V (lower than −3.3 V) to avoid the undesired triggering on the NTLSCR (PTLSCR) due to the overshooting (undershooting) voltage pulse on the output pad when the IC is under normal operating conditions with 5 V VDD and 0 V VSS power supplies.  相似文献   

4.
A new ESD protection circuit with complementary SCR structures and junction diodes is proposed. This complementary-SCR ESD protection circuit with interdigitated finger-type layout has been successfully fabricated and verified in a 0.6 μm CMOS SRAM technology with the LDD process. The proposed ESD protection circuit can be free of VDD-to-VSS latchup under 5 V VDD operation by means of a base-emitter shorting method. To compensate for the degradation on latching capability of lateral SCR devices in the ESD protection circuit caused by the base-emitter shorting method, the p-well to p-well spacing of lateral BJT's in the lateral SCR devices is reduced to lower its ESD-trigger voltage and to enhance turn-on speed of positive-feedback regeneration in the lateral SCR devices. This ESD protection circuit can perform at high ESD failure threshold in small layout areas, so it is very suitable for submicron CMOS VLSI/ULSI's in high-pin-count or high-density applications  相似文献   

5.
Considering gate-oxide reliability, a new electrostatic discharge (ESD) protection scheme with an on-chip ESD bus (ESD_BUS) and a high-voltage-tolerant ESD clamp circuit for 1.2/2.5 V mixed-voltage I/O interfaces is proposed. The devices used in the high-voltage-tolerant ESD clamp circuit are all 1.2 V low-voltage N- and P-type MOS devices that can be safely operated under the 2.5-V bias conditions without suffering from the gate-oxide reliability issue. The four-mode (positive-to-VSS, negative-to-VSS, positive-to-VDD, and negative-to-VDD) ESD stresses on the mixed-voltage I/O pad and pin-to-pin ESD stresses can be effectively discharged by the proposed ESD protection scheme. The experimental results verified in a 0.13-mum CMOS process have confirmed that the proposed new ESD protection scheme has high human-body model (HBM) and machine-model (MM) ESD robustness with a fast turn-on speed. The proposed new ESD protection scheme, which is designed with only low- voltage devices, is an excellent and cost-efficient solution to protect mixed-voltage I/O interfaces.  相似文献   

6.
As CMOS technology scales down, the design of ESD protection circuits becomes more challenging. There are some disadvantages for the actual power clamp circuit. In this paper, an optimization ESD power clamp circuit is proposed. The new clamp circuit adopts the edge triggering True Single Phase Clocked Logic (TSPCL) D flip-flop to turn on and time delay, it has the advantage of dynamic transmission structure. By adding a leakage transistor of small size, the clamp circuit can turn off effectively. By changing the W/L ratio, the clamp can safely protect the gate of ESD power clamp devices from thermoelectric breakdown. The results show that the circuit can reduce the false triggering and power supply noise more effectively, it can be widely used in high-speed integrated circuits. The proposed structure has the advantages of low power and low cost, and can be used to the system-level ESD protection.  相似文献   

7.
A new design of the diode string with very low leakage current is proposed for use in the ESD clamp circuits across the power rails. By adding an NMOS-controlled lateral SCR (NCLSCR) device into the stacked diode string, the leakage current of this new diode string with six stacked diodes at 5 V (3.3 V) forward bias can be reduced to only 2.1 (1.07) nA at a temperature of 125°C in a 0.35 μm silicide CMOS process, whereas the previous designs have a leakage current in the order of mA. The total blocking voltage of this new design with NCLSCR can be linearly adjusted by changing the number of the stacked diodes in the diode string without causing latch-up danger across the power rails. From the experimental results, the human-body-model ESD level of the ESD clamp circuit with the proposed low-leakage diode string is greater than 8 kV in a 0.35 μm silicide CMOS process by using neither ESD implantation nor the silicide-blocking process modifications  相似文献   

8.
A robust CMOS on-chip ESD protection circuit is proposed, which consists of four parasitic lateral SCR devices with low ESD trigger voltages to protect NMOS and PMOS devices of the internal circuits against the ESD pulses with both positive and negative polarities with respect to either VDD or VSS(GND) nodes. For each ESD stress with positive or negative polarity, there is an efficient and direct shunt path generated by the SCR low-impedance latching state to quickly bypass the ESD current. Thus, this four-SCR ESD protection circuit can perform very efficient protection in a small layout area. Since there is no diffusion or polysilicon resistor in the proposed ESD protection circuit, the RC delay between each I/O pad and its internal circuits is very low and high-speed applications are feasible. The experimental results show that this four-SCR protection circuit can successfully perform very effective protection against ESD damage. Moreover, the proposed ESD protection circuit is fully process-compatible with n-well or p-well CMOS and BiCMOS technologies.  相似文献   

9.
Electrostatic discharge (ESD) protection design for mixed-voltage I/O interfaces has been one of the key challenges of system-on-a-chip (SOC) implementation in nanoscale CMOS processes. The on-chip ESD protection circuit for mixed-voltage I/O interfaces should meet the gate-oxide reliability constraints and prevent the undesired leakage current paths. This paper presents an overview on the design concept and circuit implementations of ESD protection designs for mixed-voltage I/O interfaces with only low-voltage thin-oxide CMOS transistors. Especially, the ESD protection designs for mixed-voltage I/O interfaces with ESD bus and high-voltage-tolerant power-rail ESD clamp circuits are presented and discussed.  相似文献   

10.
A new electrostatic discharge (ESD) protection design, by using the substrate-triggered stacked-nMOS device, is proposed to protect the mixed-voltage I/O circuits of CMOS ICs. The substrate-triggered technique is applied to lower the trigger voltage of the stacked-nMOS device to ensure effective ESD protection for the mixed-voltage I/O circuits. The proposed ESD protection circuit with the substrate-triggered technique is fully compatible to general CMOS process without causing the gate-oxide reliability problem. Without using the thick gate oxide, the new proposed design has been fabricated and verified for 2.5/3.3-V tolerant mixed-voltage I/O circuit in a 0.25-/spl mu/m salicided CMOS process. The experimental results have confirmed that the human-body-model ESD level of the mixed-voltage I/O buffers can be successfully improved from the original 3.4 to 5.6 kV by using this new proposed ESD protection circuit.  相似文献   

11.
CMOS集成电路中电源和地之间的ESD保护电路设计   总被引:4,自引:1,他引:3  
讨论了3种常用的CMOS集成电路电源和地之间的ESD保护电路,分别介绍了它们的电路结构以及设计考虑,并用Hspice对其中利用晶体管延时的电源和地的保护电路在ESD脉冲和正常工作两种情况下的工作进行了模拟验证。结论证明:在ESD脉冲下,该保护电路的导通时间为380ns;在正常工作时。该保护电路不会导通.因此这种利用晶体管延时的保护电路完全可以作为CMOS集成电路电源和地之间的ESD保护电路。  相似文献   

12.
CMOS片上电源总线ESD保护结构设计   总被引:1,自引:0,他引:1  
随着集成电路制造技术的高速发展,特征尺寸越来越小,静电放电对器件可靠性的危害也日益增大,ESD保护电路设计已经成为IC设计中的一个重要部分.讨论了三种常见的CMOS集成电路电源总线ESD保护结构,分析了其电路结构、工作原理和存在的问题,进而提出了一种改进的ESD保护电源总线拓扑结构.运用HSPICE仿真验证了该结构的正确性,并在一款自主芯片中实际使用,ESD测试通过±3 000 V.  相似文献   

13.
There is one LVTSCR device merged with short-channel NMOS and another LVTSCR device merged with short-channel PMOS in a complementary style to offer effective and direct ESD discharging paths from the input or output pads to VSS and VDD power lines. The trigger voltages of LVTSCR devices are lowered to the snapback-breakdown voltages of short-channel NMOS and PMOS devices. This complementary-LVTSCR ESD protection circuit offers four different discharging paths to one-by-one bypass the four modes of ESD stresses at the pad, so it can effectively avoid unexpected ESD damage on internal circuits. Experimental results show that it provides excellent ESD protection capability in a smaller layout area as compared to the conventional CMOS ESD protection circuit. The device characteristics under a high-temperature environment of up to 150/spl deg/C are also experimentally investigated to guarantee the safety of this proposed ESD protection circuit.  相似文献   

14.
The capacitive load, from the large electrostatic discharge (ESD) protection device for high ESD robustness, has an adverse effect on the performance of broad-band RF circuits due to impedance mismatch and bandwidth degradation. The conventional distributed ESD protection scheme using equal four-stage ESD protection can achieve a better impedance match, but degrade the ESD performance. A new distributed ESD protection structure is proposed to achieve both good ESD robustness and RF performance. The proposed ESD protection circuit is constructed by arranging ESD protection stages with decreasing device size, called as decreasing-size distributed electrostatic discharge (DS-DESD) protection scheme, which is beneficial to the ESD level. The new proposed DS-DESD protection scheme with a total capacitance of 200 fF from the ESD diodes has been successfully verified in a 0.25-mum CMOS process to sustain a human-body-model ESD level of greater than 8 kV  相似文献   

15.
A new charge pump circuit with consideration of gate-oxide reliability is designed with two pumping branches in this paper. The charge transfer switches in the new proposed circuit can be completely turned on and turned off, so its pumping efficiency is higher than that of the traditional designs. Moreover, the maximum gate-source and gate-drain voltages of all devices in the proposed charge pump circuit do not exceed the normal operating power supply voltage (VDD). Two test chips have been implemented in a 0.35-/spl mu/m 3.3-V CMOS process to verify the new proposed charge pump circuit. The measured output voltage of the new proposed four-stage charge pump circuit with each pumping capacitor of 2 pF to drive the capacitive output load is around 8.8 V under 3.3-V power supply (VDD = 3.3 V), which is limited by the junction breakdown voltage of the parasitic pn-junction in the given process. The new proposed circuit is suitable for applications in low-voltage CMOS processes because of its high pumping efficiency and no overstress across the gate oxide of devices.  相似文献   

16.
This paper reports an ESD internal gate-oxide damage occurred on the digital-analog interface of a mixed-mode CMOS IC. A new ESD protection method is proposed to rescue this internal gate-oxide damage by adding ESD-protection devices on the long metal line between digital-analog interfaces. Experimental verification has confirmed that the IC product can be rescued to pass 2-KV ESD stress from the digital/analog VDD to digital/analog VSS pads without causing any internal damage again.  相似文献   

17.
A new electrostatic discharge (ESD) protection circuit, using the stacked-nMOS triggered silicon controlled rectifier (SNTSCR) as the ESD clamp device, is designed to protect the mixed-voltage I/O buffers of CMOS ICs. The new proposed ESD protection circuit, which combines the stacked-nMOS structure with the gate-coupling circuit technique into the SCR device, is fully compatible to general CMOS processes without causing the gate-oxide reliability problem. Without using the thick gate oxide, the experimental results in a 0.35 /spl mu/m CMOS process have proven that the human-body-model ESD level of the mixed-voltage I/O buffer can be successfully increased from the original /spl sim/2 kV to >8 kV by using this proposed ESD protection circuit.  相似文献   

18.
In order to enhance the applications of SCR devices for deep-submicron CMOS technology, a novel SCR design with "initial-on" function is proposed to achieve the lowest trigger voltage and the highest turn-on efficiency of SCR device for effective on-chip ESD protection. Without using the special native device (NMOS with almost zero or even negative threshold voltage) or any process modification, this initial-on SCR design is implemented by PMOS-triggered SCR device, which can be realized in general CMOS processes. This initial-on SCR design has a high enough holding voltage to avoid latchup issues in a VDD operation voltage of 2.5 V. The new proposed initial-on ESD protection design with PMOS-triggered SCR device has been successfully verified in a fully-silicided 0.25-mum CMOS process  相似文献   

19.
A new CMOS on-chip electrostatic discharge (ESD) protection circuit which consists of dual parasitic SCR structures is proposed and investigated. Experimental results show that with a small layout area of 8800 μ2, the protection circuit can successfully perform negative and positive ESD protection with failure thresholds greater than ±1 and ±10 kV in machine-mode (MM) and human-body-mode (HBM) testing, respectively. The low ESD trigger voltages in both SCRs can be readily achieved through proper circuit design and without involving device or junction breakdown. The input capacitance of the proposed protection circuit is very low and no diffusion resistor between I/O pad and internal circuits is required, so it is suitable for high-speed applications. Moreover, this ESD protection circuit is fully process compatible with CMOS technologies  相似文献   

20.
陶剑磊  方培源  王家楫 《半导体技术》2007,32(11):1003-1006
ESD保护电路已经成为CMOS集成电路不可或缺的组成部分,在当前CMOS IC特征尺寸进入深亚微米时代后,如何避免由ESD应力导致的保护电路的击穿已经成为CMOS IC设计过程中一个棘手的问题.光发射显微镜利用了IC芯片失效点所产生的显微红外发光现象可以对失效部位进行定位,结合版图分析以及微分析技术,如扫描电子显微镜SEM、聚焦离子束FIB等的应用可以揭示ESD保护电路的失效原因及其机理.通过对两个击穿失效的CMOS功率ICESD保护电路实际案例的分析和研究,提出了改进ESD保护电路版图设计的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号