首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of InN thin films was grown on sapphire substrates via plasma-assisted molecular beam epitaxy (PA-MBE) with different nitrogen plasma power. Various characterization techniques, including Hall, photoluminescence, Raman scattering and Rutherford backscattering, have been employed to study these InN films. Good crystalline wurtzite structures have been identified for all PA-MBE grown InN films on sapphire substrate, which have narrower XRD wurtzite (0002) peaks, showed c-axis Raman scattering allowed longitudinal optical (LO) modes of A1 and E1 plus E2 symmetry, and very weak backscattering forbidden transverse optical (TO) modes. The lower plasma power can lead to the lower carrier concentration, to have the InN film close to intrinsic material with the PL emission below 0.70 eV. With increasing the plasma power, high carrier concentration beyond 1 × 1020 cm− 3 can be obtained, keeping good crystalline perfection. Rutherford backscattering confirmed most of InN films keeping stoichiometrical In/N ratios and only with higher plasma power of 400 W leaded to obvious surface effect and interdiffusion between the substrate and InN film.  相似文献   

2.
3.
We investigated the structural properties of Zn-polar ZnO films with low temperature (LT) ZnO and MgO buffer layers grown by plasma-assisted molecular beam epitaxy on (0001) c-Al2O3 substrates using X-ray diffraction and transmission electron microscopy (TEM). The effects of MgO buffer layer thickness and LT ZnO buffer layer thickness were also examined. The optimum thicknesses for better crystal quality were 8 and 40 nm. One-pair and two-pair LT ZnO/MgO buffer layers were employed, and the changes in the structural properties of the high-temperature (HT) ZnO films using such buffer layers were studied. Contrary to the general tendency of c-ZnO films, the HT ZnO films on the LT ZnO/MgO buffer layers showed higher full width at half maximum (FWHM) values for X-ray rocking curves (XRCs) with (0002) reflection than those with (101?1) reflection. Compared with the one-pair LT ZnO/MgO buffer layers, the FWHM values of (0002) XRCs markedly decreased, whereas those of (101?1) XRCs slightly increased due to the insertion of one more pair of LT ZnO/MgO buffer layers into the previous film with one-pair LT ZnO/MgO buffer layers. The cross-sectional TEM observations with the two-beam condition confirmed that the screw dislocation was the dominant threading dislocation type—a finding that agreed well with the XRC results. On the basis of the plan-view TEM observations, the densities of the total threading dislocations for the HT ZnO films with the one- and two-pair LT ZnO/MgO buffer layers were determined as 2.3 × 109 cm− 2 and 1.6 × 109 cm− 2, respectively. The results imply that the crystal quality of Zn-polar ZnO films can be improved by two-pair LT ZnO/MgO buffer layers, and types of threading dislocations can be modified by adjusting the buffer system.  相似文献   

4.
The thin film transistors (TFTs) based on nitrogen doped zinc oxide (ZnO) were investigated by laser molecular beam epitaxy. The increase of ZnO films' resistivity by nitrogen doping was found and applied in enhancement mode ZnO-TFTs. The ZnO-TFTs with a conventional bottom-gate structure were fabricated on thermally oxidized p-type silicon substrate. Electrical measurement has revealed that the devices operate as an n-channel enhancement mode and exhibit an on/off ratio of 104. The threshold voltage is 5.15 V. The channel mobility on the order of 2.66 cm2 V− 1 s− 1 has been determined.  相似文献   

5.
Chien-Huang Tsai 《Vacuum》2012,86(9):1328-1332
In this study, we used an RF plasma-assisted molecular beam epitaxy (RF-MBE) system to grow single-crystalline indium nitride (InN) films onto aluminum nitride (AlN) buffer layers on Si (111) substrates. We then used nanoindentation techniques and reflection high-energy electron diffraction (RHEED) to study the influence of the c-axis-oriented InN films on the mechanical performance. From morphological observations, we compared the stiffness and resistance against contact-induced damage of the InN films in the presented shrinkage of the area. InN films prepared at growth temperatures of 440, 470, and 500 °C had nanohardnesses (H) of 3.6 ± 0.2, 4.5 ± 0.25, and 9.1 ± 0.8 GPa, respectively, and Young’s moduli (E) of 97.4 ± 1.2, 147.7 ± 1.8, and 176.0 ± 2.3 GPa, respectively.  相似文献   

6.
Plasma-assisted molecular beam epitaxy (MBE) was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 440°C–445°C and an O2 flow rate of 2.0–2.5 sccm, we obtained ZnO layers with smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm shown by AFM. The FWHM for X-ray rocking curves recorded across the ZnO(0002) and ZnO(101ˉ5) reflections were 200 and 950 arcsec, respectively. These values showed that the mosaicity (tilt and twist) of the ZnO film was comparable to corresponding values of the underlying GaN buffer. It was found that a substrate temperature >450°C and a high Zn-flux always resulted in a rough ZnO surface morphology. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82.3% and 73.0%, respectively and the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements showed that the layers were intrinsically n-type with an electron concentration of 1019 cm–3 and a Hall mobility of 50 cm2·V–1·s–1.  相似文献   

7.
ZnO layers were grown on (111) GaAs substrates by laser molecular epitaxy at substrate temperatures between 200 and 550 °C. X-ray diffraction analysis revealed that c-axis of ZnO epilayer with a wurtzite structure is perpendicular to the substrate surface. X-ray rocking curves and Raman spectroscopy showed that the crystal quality of ZnO epilayers depends on the substrate temperature during the growth. Strong near-band-edge emission in the UV region without any deep-level emissions was observed from the ZnO epilayers at room temperature. The results indicate that laser molecular beam epitaxy is a promising growth method for obtaining high-quality ZnO layers on (111) GaAs substrates.  相似文献   

8.
Single-phase Ti1−xMnxO2 films with x = 0–8% were synthesized by plasma-assisted molecular beam epitaxy (PAMBE), and the effect of Mn content on the magnetic behaviors has been systemically investigated. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies indicate no Mn metal clusters or secondary magnetic phases in any samples in this study. It is found that the undoped or slightly doped samples show no ferromagnetic signal, while samples with x in the range of 3–5% exhibit an exponential increase of saturation magnetization (Ms) as a function of Mn concentration. When x increases beyond 5%, an inverse correlation between the magnetization and Mn content was observed. Our results also strongly support the oxygen vacancy (F-center) mediated mechanism for RT ferromagnetism in transition-metal doped high-k oxides.  相似文献   

9.
In this paper, we report on the controlling of the effect of growth parameters such as substrate temperature and the ratio of Cr and N atoms on phase formation, surface morphology and crystallization of CrN(001) thin films grown by plasma-assisted molecular beam epitaxy on the MgO(001) substrate. The reflection high energy electron diffraction, atomic force microscopy, X-ray diffraction and scanning tunneling microscopy are used to characterize the thin films grown under various conditions. High-quality CrN(001) thin films are achieved at a substrate temperature 430 °C with a low Cr deposition rate.  相似文献   

10.
ZnO thin films were deposited on porous silicon by plasma-assisted molecular beam epitaxy using different radio frequency power settings. Optical emission spectrometry was applied to study the characteristics of the oxygen plasma, and the effects of the radio frequency power on the properties of the ZnO thin films were evaluated by X-ray diffraction, scanning electron microscopy, and photoluminescence. The grain sizes for radio frequency powers of 100, 200, and 300 W were 46, 48, and 62 nm, respectively. In addition, the photoluminescence intensities of the ultraviolet and the visible range increased at 300 W, because the density of the atomic oxygen transitions increased. The quality of the ZnO thin films was enhanced, but the deep-level emission peaks increased with increasing radio frequency power. The structural and optical properties of the ZnO thin films were improved at the radio frequency power of 300 W. Moreover, the optical properties of the ZnO thin films were improved with porous silicon, instead of Si.  相似文献   

11.
Hexagonal GaN and AlN thin films were grown by laser induced molecular beam epitaxy using Al or Ga metal as target material and N2as nitrogen source. The films were deposited on sapphire (0001) and SiC (0001) substrates. Epitaxial growth of GaN has been achieved at 730°C and 10−3 mbar N2 pressure. The AlN films were polycrystalline with predominant (0001) orientation.  相似文献   

12.
GaN films are grown on [0 0 1] GaAs substrates by plasma-assisted molecular beam epitaxy using a three-step process that consists of a substrate nitridation, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. X-ray diffraction and transmission electron microscopy indicate that this method promotes prismatic growth of c-oriented α-GaN. Photoluminescence studies show that the emission from cubic β-GaN inclusions dominates the spectrum.  相似文献   

13.
I.V. Rogozin 《Thin solid films》2009,517(15):4318-4321
We investigate the p-type doping in ZnO prepared by the method of radical beam gettering epitaxy using NO gas as the oxygen source and nitrogen dopant. Secondary ion mass spectroscopy measurements demonstrate that N is incorporated into ZnO film in concentration of about 8 × 1018 cm− 3. The hole concentration of the N-doped p-type ZnO films was between 1.4 × 1017 and 7.2 × 1017 cm− 3, and the hole mobility was 0.9-1.2 cm2/Vs as demonstrated by Hall effect measurements. The emission peak of 3.312 eV is observed in the photoluminescence spectra at 4.2  of N-doped p-type ZnO films, probably neutral acceptor bound. The activation energy of the nitrogen acceptor was obtained by temperature-dependent Hall-effect measurement and equals about 145 meV. The p-n heterojunctions ZnO/ZnSe were grown on n-type ZnSe substrate and have a turn-on voltage of about 3.5 V.  相似文献   

14.
In this paper, we report a buffering method of improving the quality of ITO thin films on glass by r.f. magnetron sputtering. By applying a ZnO buffer before the ITO deposition in the same run of sputtering, ITO films showed single (111)-oriented highly textured structure, while ITO films showed mixed-oriented polycrystalline structure on bare glass. A design of experiment was taken out to minimize the resistivity of ITO films in the deposition parameter space (oxygen ratio, total gas pressure, and temperature). Resistance measurements showed that the ITO films with ZnO buffers had a remarkable 50% decrease of resistivity comparing to those without ZnO buffers at optimized deposition condition. Room-temperature Hall effect measurements showed that the decrease in resistivity comes from a large increase of mobility and a slight increase of carrier density after forming gas annealing. The ZnO/glass may be a good alternative substrate to bare glass for producing high quality ITO films for advanced electro-optic applications.  相似文献   

15.
The optical properties of as-grown InN/sapphire films prepared by plasma assisted molecular beam epitaxy (PA-MBE) are characterized by photoluminescence (PL), Raman scattering (RS) and infrared (IR) reflectance techniques. The PL measurements have consistently exhibited lower values of InN band gaps providing clear indications of electron concentration dependent peak energy shifts and widths. The phonon modes identified by RS are found to be in good agreement with the grazing inelastic X-ray scattering measurements and ab initio lattice dynamical calculations. An effective medium theory used to analyze IR reflectance spectra of InN/sapphire films has provided reasonable estimates of free charge carrier concentrations.  相似文献   

16.
We report on the growth of monocrystalline thin films of ZnSe and ZnO by atomic layer epitaxy by simple reaction between elemental precursors. Structural and optical properties of these films are discussed with reference to the investigations performed with atomic force microscopy, scanning electron microscopy, cathodoluminescence and photoluminescence.  相似文献   

17.
The paper presents the properties of zinc oxide thin films deposited on glass substrate via dip-coating technique. Zinc acetate dehydrate, ethanol and monoethanol amine were used as starting materials and N2 gas was used as thermal annealing atmosphere for film crystallization. The effect of withdrawal speed on the crystalline structure, morphology, zinc and nitrogen chemical states, optical, electrical and gas-sensing properties of the thin films has been investigated using X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, optical transmittance and photoreduction-ozone reoxidation data.  相似文献   

18.
ZnO thin films are grown on Si substrates with SiC buffer layer using ion plasma high frequency magnetron sputtering. These substrates are fabricated using a technique of solid phase epitaxy. With this technique SiC layer of thickness 20-200 nm had been grown on Si substrates consisting pores of sizes 0.5-5 μm at SiC and Si interface. Due to mismatching in lattice constants as well as thermal expansion coefficients, elastic stresses have been developed in ZnO film. Pores at the interface of SiC and Si are acting as the elastic stress reliever of the ZnO films making them strain free epitaxial. ZnO film grown on this especially fabricated Si substrate with SiC buffer layer exhibits excellent crystalline quality as characterized using X-ray diffraction. Surface topography of the film has been characterized using Atomic Force Microscopy as well as Scanning Electron Microscopy. Chemical compositions of the films have been analyzed using Energy Dispersive X-ray Spectroscopy. Optical properties of the films are investigated using Photoluminescence Spectroscopy which also shows good optical quality.  相似文献   

19.
利用激光分子束外延方法(LMBE)在单晶Si(100)和玻璃基片上生长了ZnO薄膜.通过XRD谱、拉曼光谱和光致发光(PL)谱研究了ZnO薄膜的结构和光学性能.结果表明,ZnO薄膜具有六方纤锌矿结构,(002)衍射峰较强,c轴择优取向良好.在可见光范围,ZnO薄膜的平均透射率>80%,而在紫外范围,平均透射率急剧降低.拟合得到ZnO薄膜的禁带宽度为3.31eV.随激发波长增加,PL谱峰位没有变化,但强度发生了变化.同时,随测量温度升高,紫外发光峰强度减弱,峰位红移,半高宽展宽.理论拟合得到ZnO薄膜的活化能为59meV,接近于ZnO体材料的激子束缚能(60meV),说明紫外发光是由自由激子辐射复合引起的.  相似文献   

20.
InAs(Sb) quantum dots (QDs) samples were grown on GaAs (001) substrate by Molecular Beam Epitaxy (MBE). The structural characterization by Atomic Force Microscopy (AFM) of samples shows that InAsSb islands size increases strongly with antimony incorporation in InAs/GaAs QDs and decreases with reducing the growth temperature from 520 °C to 490 °C. Abnormal optical behaviour was observed in room temperature (RT) photoluminescence (PL) spectra of samples grown at high temperature (520 °C). Temperature dependent PL study was investigated and reveals an anomalous evolution of emission peak energy (EPE) of InAsSb islands, well-known as “S-inverted curve” and attributed to the release of confined carriers from the InAsSb QDs ground states to the InAsSb wetting layer (WL) states. With only decreasing the growth temperature, the S-inverted shape was suppressed indicating a fulfilled 3D-confinement of carriers in the InAsSb/GaAs QD sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号