首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bharadwaj P  Novotny L 《Nano letters》2011,11(5):2137-2141
Photon emission from quantum dots (QDs) and other quantum emitters is characterized by abrupt jumps between an "on" and an "off" state. In contrast to ions and atoms however, the durations of bright and dark periods in colloidal QDs curiously defy a characteristic time scale and are best described by a power-law probability distribution, i.e., ρ(τ) ∝ τ(-α). We controllably couple a single colloidal QD to a single gold nanoparticle and find that power-law blinking is preserved unaltered even as the gold nanoparticle drastically modifies the excitonic decay rate of the QD. This resilience of the power law to change provides evidence that blinking statistics are not swayed by environment-induced variations in kinetics and provides clues toward the mechanism responsible for universal fluorescence intermittency.  相似文献   

2.
Room-temperature photoluminescence (PL) at 1.55 μm from heterostructures with InAs/InGaAsN quantum dots (QDs) grown by MBE on GaAs substrates is demonstrated for the first time. The effect of nitrogen incorporated into InAs/InGaAsN QDs on the PL wavelength and intensity was studied. The integral intensity of PL from the new structure with InAs/(In)GaAsN QDs is comparable to that from a structure with InGaAsN quantum wells emitting at 1.3 μm.  相似文献   

3.
Alloyed quantum dots (QDs) passivated with shell materials have valuable optical characteristics suitable for a wide array of applications. In this work, alloyed ternary CdSeS QDs passivated with ZnSeTe and ZnSeTe/ZnS shells have been synthesized via a hot-injection method and a ligand exchange reaction employing l-cysteine as a thiol ligand has been used to obtain these water-soluble nanocrystals for the first time. The photoluminescence (PL) quantum yield (QY) of alloyed l-cysteine-capped CdSeS was 71.2% but decreased significantly to 5.2% upon passivation with a ZnSeTe shell. The red shift in PL emission of the CdSeS/ZnSeTe QDs was attributed to be strain-induced whilst a lattice-induced process likely created defect states in the core/shell interface hence contributing to the decline in the PL QY. Nonetheless, the fluorescence stability of CdSeS/ZnSeTe QDs in aqueous solution was unperturbed. Further passivation with a ZnS shell (CdSeS/ZnSeTe/ZnS) improved the PL QY to a value of 58.7% and thus indicates that the defect state in the QDs core/shell/shell structure was reduced. PL lifetime exciton measurements indicated that the rates of decay of the QDs influenced their photophysical properties.  相似文献   

4.
Thioglycolic acid (TGA)-coated colloidal Ag2S quantum dots (QDs) emitting in the near-infrared (NIR) region upon excitation by an 808 nm diode laser were synthesized. The observed photoluminescence (PL) was attributed to the presence of ligand-modified Ag2S on the QD surfaces and could be easily controlled by a simple dilution process due to the concentration-dependent surface structure of the colloidal QDs. Upon dilution of the solution, the PL intensity initially increased before later decreasing, with a blueshift being observed in the PL spectra. These phenomena can be accounted for by the aggregation of QDs due to a decrease in the content of ligand-modified Ag2S on the QD surfaces upon dilution, which in turn affected the fluorescence resonance energy transfer (FRET), and re-emission of the surface energy level.  相似文献   

5.
采用微波辐射加热的方法,以亚碲酸钠(Na2TeO3)作碲源,以谷胱甘肽(GSH)作稳定剂,在水相中合成出高质量的CdTe量子点。所合成量子点的发射波长从515~630nm可调,荧光量子产率(PLQYs)最高达95%。利用X射线粉末衍射(XRD)、高分辨透射电镜(HRTEM)、紫外-可见吸收光谱(UV-Vis)和荧光发射光谱(PL)等技术表征产物的物相结构和光学性质。用双光子激发荧光法研究CdTe量子点的双光子吸收性质。用双光子激发荧光成像技术,以发红光的CdTe量子点作为双光子荧光探针成功标记了人肺腺癌细胞(A549)。  相似文献   

6.
CdTe0.5Se0.5/Cd0.5Zn0.5S core/shell quantum dots (QDs) with a tunable photoluminescence (PL) range from yellow to dark red (up to a PL peak wavelength of 683 nm) were fabricated using various reaction systems. The core/shell QDs created in the reaction solution of trioctylamine (TOA) and oleic acid (OA) at 300 °C exhibited narrow PL spectra and a related low PL efficiency (38%). In contrast, the core/shell QDs prepared in the solution of 1-octadecene (ODE) and hexadecylamine (HDA) at 200 °C revealed a high PL efficiency (70%) and broad PL spectra. This phenomenon is ascribed that the precursor of Cd, reaction temperature, solvents, and ligands affected the formation process of the shell. The slow growth rate of the shell in the solution of ODE and HDA made QDs with a high PL efficiency. Metal acetate salts without reaction with HDA led to the core/shell QDs with a broad size distribution.  相似文献   

7.
Highly luminescent water-soluble CdTe quantum dots were synthesized with an electrogenerated precursor. The size, morphology, optical properties as well as fluorescence stability were characterized by transmission electron microscope, high-resolution transmission electron microscope, powder X-ray diffraction, UV-vis-NIR spectrophotometer, and fluorescence spectrophotometer. The results show that the CdTe QDs with diameter ranging from 2.0 nm to 3.5 nm have good crystallizability, high quantum yield and favorable fluorescence stability. Moreover, the CdTe QDs demonstrate temperature-dependent reversible PL intensity variations at moderate temperatures above room temperature. It is also found that the QDs with different sizes possess different sensitivity to the temperature. All the studies indicate that the CdTe QDs are expected to be promising candidates for a variety of biological and biomedical applications.  相似文献   

8.
Among transition metal dichalcogenides family, molybdenum disulphide (MoS2) nanomaterial has a vital role in two-dimensional field due to its intrinsic optical and electronic properties. In this study, we report a new top-down approach for synthesising MoS2 quantum dots (QDs). This strategy consists of liquid nitrogen (LN2) quenching of bulk MoS2 material followed by two processes, probe sonication and ultra-centrifugation. This approach is simple, cost effective and eco-friendly. The structural, optical and morphological properties of obtained MoS2 quantum dots were characterised. Photoluminescence spectra (PL) of the synthesised MoS2 QDs show blue light emission when excited with ultraviolet radiation (365?nm). A significant observation in this study is that, the peak position of photoluminescence (PL) emission spectra is independent of excitation wavelength. In addition, a higher fluorescence quantum yield was obtained for the present MoS2 QDs compared to MoS2 QDs prepared by other methods.  相似文献   

9.
The microscopic origin of the bright nanosecond blue‐green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si‐QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL from alkyl‐terminated Si‐QDs of 2–3 nm size, prepared by wet chemical synthesis is reported. Results obtained on the ensemble and those from the single nano‐object level are compared, and they provide conclusive evidence that efficient and tunable emission arises due to radiative recombination of electron–hole pairs confined in the Si‐QDs. This understanding paves the way towards applications of chemical synthesis for the development of Si‐QDs with tunable sizes and bandgaps.  相似文献   

10.
Solid ZnSe quantum dots (QDs) have been prepared via chemical route. The QDs have been characterized by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Photoluminescence (PL) and Ultraviolet-Visible Spectroscopy (Uv-Vis). The QD sizes were found to vary from 2.5 to 9.5 nm. The XRD measurement reveals an increase in the interplanar spacing in QDs as compared to their bulk counterpart. This observation is further supported by Rietveld analysis which establishes the formation of single phase zinc blende ZnSe QDs and confirms 3.9% lattice expansion. Calculations based upon the thermodynamical theory yield 8.7% concentration of vacancies due to the lattice expansion. We observe various peaks in the PL spectra which may arise either due to the QD size variations or the defects due to the vacancies.  相似文献   

11.
Quantum dot (QD) fluorescent spheres have captivated many scientists because of their many potential applications in biomedical research. In this work, QD nanospheres were prepared using a novel method: incorporating QDs into nano-liposomes and then synthesising a silica shell using a lipid membrane as the template. The results showed that the nanocomposites obtained were spherical in shape, and each nanosphere contained a silica shell and the cores consisted of a large amount of QDs. Ultrathin sections of the spheres showed that the thickness of the silica shell was about 50–60?nm. Because the QD cores were coated with liposome and thick silica shell, the bright field of the silica sphere suspension was close to milk white in colour, which was different from that of the red-coloured QD solution. Although the quantum yield of the silica spheres (2.27%) was lower than that of the QDs (23.52%), these nanospheres still emitted a bright fluorescence, and there was no obvious difference between the fluorescent colour of the nanosphere suspension and the QD solution.  相似文献   

12.
Separation of bioconjugated quantum dots using capillary electrophoresis   总被引:1,自引:0,他引:1  
Capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was used to separate different bioconjugated CdSe/ZnS quantum dots (QDs). The QD nanocrystals studied were conjugated to the biomolecules streptavidin, biotin, and immunoglobulin G. The bioconjugated QDs showed different electrophoretic mobilities, which appear to depend upon the biomolecule that is attached to the QD and the buffer solution used. The use of a polymeric additive into the CE run buffer improved the resolution of the bioconjugates. Under CE conditions, the interaction between QD bioconjugates containing streptavidin (QDSt) and biotin (QDBi) was monitored. Under a given set of experimental conditions, the fluorescence intensity of QDSt and QDBi emitting light at 655 nm indicated that about 90% of QDBi complexed with 70% of QDSt. A two-color experiment that made use of two different sizes of QD (i.e., 585 and 655 nm) indicated that 30% of the 655 nm QDBi complexed with 53% of the 585 nm QDSt. The use of QDs with different emission properties allows the selective monitoring of two different wavelengths while using one single excitation source. This, in turn, allowed the monitoring of overlapping peaks in the electropherogram when newly formed products resulting from the interaction of the two bioconjugated QDs appeared.  相似文献   

13.
A convenient route for the synthesis of high-quality overcoated II-VI quantum dots (QDs) is reported in this paper. Simple salts, such as Cd(Ac)2 and Zn(Ac)2 were used to replace organometallics, whose disadvantage is obvious. Size-tunable core/shell structured QDs (CdSe/ZnS, CdSe/CdS, etc.) were synthesized. They were of narrow size distribution and had good monodispersivity and photoluminescence (PL) properties. The spectrum was symmetrical and sharp-pointed (with the full width at half-maximum (fwhm) of about 20-30 nm). The quantum yield (QY) was improved to 60-80% from 20-30% for bare QDs and remained stable at least for 6 months. The primary overcoated QDs were modified with biomacromolecules by a direct mechanical rubbing strategy, which is very simple and fast. The results obtained by UV-vis, PL, atomic force microscopy (AFM), and fluorescence microscopy imaging showed that the modified QDs were of good fluorescent and monodisperse characteristics. They are likely to be used further for biological labels.  相似文献   

14.
Highly photoluminescent hexadecylamine (HDA) capped core CdSe quantum dots (QDs) with fluorescent quantum yields (QYs) up to 60% were synthesized using a hot injection method and directly incorporated into nylon polymer. For the incorporation of crude CdSe QDs into nylon a simple reproducible and upscalable one pot approach was developed without the need of further purification steps. The photoluminescence (PL) properties of the core QDs and the resulting QD-polymer hybrid composites were investigated and compared. Red emitting hybrid materials exhibit a QY of 60% with a high potential for applications in direct light and energy conversion. The hybrid materials could be successfully utilized as LED conversion layers. By avoiding exposure to oxygen the hybrid films can be kept for a month without detecting a significant decrease in luminescence. Various three dimensional structures are easily available opening doors for further applications such as novel materials for fluorescence standard development in laser scanning microscopy (LSM).  相似文献   

15.
As advantaged nanoscale fluorescent bioprobes, quantum dot (QD) bioconjugates have been widely used in biomedical research. However, the stability of these bioconjugates stored over a period of time has been rarely reported. Here, we synthesised water-soluble QDs by conjugating the human epidermal growth factor (EGF) to these low-cost QDs using 1-ethyl-3(3-dimethylamino propyl)-carbodiimide (EDC) as a cross-linking reagent. These bioconjugates nanomaterials were then used to label cancer cells (MDA-MB-435S and SMMC-7721) and normal cells (HL-7702) whose surfaces expressed high-level (for the cancer cells) and low-level (for the normal cells) EGF receptors (EGFR). We found that although the fluorescence intensity of these bioconjugates decreased with prolonged storage time at 4°C for more than 4 months, their aqueous solution retained a transparent appearance, good particle dispersion and very bright fluorescence. Furthermore, the bioconjugates could still well recognise cancer cells. As a control, the normal cells were labelled with a small amount of the fresh and stored bioconjugates. The results presented in this work indicated that QD bioconjugates prepared with QDs synthesised in aqueous solution may be used as a low-cost biomedical test kit for biomedical imaging and diagnosis, where the QD bioconjugates could be stored for long periods of time.  相似文献   

16.
以聚酰胺-胺树形分子为模板制备了平均粒径为2.5nm的CdS量子点, 采用HRTEM、EDS、UV-vis、PL等手段对样品进行表征, 研究了其在室温避光条件下的老化过程. 结果表明, CdS量子点在刚制备的前5d里UV-vis、PL谱峰半峰宽变窄, 发光效率迅速上升, 表明量子点以尺寸窄化生长为主; 5d后UV-vis、PL谱峰半峰宽逐渐宽化, 发光效率缓慢下降, 表明量子点以尺寸宽化(Ostwald 熟化)过程为主. 树形分子的配位作用和模板作用赋予CdS量子点良好的抗老化性能, 6个月后量子点粒径增量<0.3nm, PL强度约降低22%.  相似文献   

17.
The photopatterning of CdSe quantum dots (QDs) films is facilitated by preparing defect-rich QDs on selective sites on the film. A key step is UV irradiation in the presence of a polar solvent such as methanol in situ as a "developer" which readily dissolves trioctylphosphine oxide (TOPO) but not the QDs. This results in a dramatically reduced photopatterning time and irradiation intensity requirement. The optical property changes were examined by UV-vis and fluorescence spectroscopy. Furthermore, the photo-oxidized pattern of the CdSe QD film was readily observed by fluorescence microscopy. The chemical change due to attenuation of the P═O vibration of TOPO (due to its removal) could be detected by FT-IR imaging or FT-IR chemical mapping. Thus, the protocol is a simple yet effective way of patterning PL properties of QD films at much reduced exposure time compared to previously reported methods. It may find utility for a host of cell-based film assays and PL display device applications at various resolutions.  相似文献   

18.
Alkanoate-coated CdSe/CdS core/shell quantum dots(QDs)with near-unity photoluminescence(PL)quantum yield and monoexponential PL decay dynamics are applied for studying quasi-stationary charge transfer from photo-excited QDs to quinone derivatives physically-adsorbed within the ligand monolayer of a QD.Though PL quenching efficiency due to electron transfer can be up to>80%,transient PL and transient absorption spectra reveal that the charge transfer rate ranges from single-digit nanoseconds to sub-nanoseconds,which is~3 orders of magnitude slower than that of static charge transfer and?2 orders of magnitude faster than that of collisional charge transfer.The physically-adsorbed acceptors can slowly(500-1,000 min dependent on the size of the quinone derivatives)desorb from the ligand monolayer after removal of the free acceptors.Contrary to collisional charge transfer,the efficiency of quasi-stationary charge transfer increases as the ligand length increases by providing additional adsorption compartments in the elongated hydrocarbon chain region.Because ligand monolayer commonly exists for a typical colloidal nanocrystal,the quasi-stationary charge transfer uncovered here would likely play an important role when colloidal nanocrystals are involved in photocatalysis,photovoltaic devices,and other applications related to photo-excitation.  相似文献   

19.
CdS x Se1−x nanoparticles or quantum dots (QDs) were grown in borosilicate glass by a two-step heat-treatment process from a melt-quenched color filter glass. We incorporate the results of optical absorption, steady-state photoluminescence (PL), and resonant Raman spectroscopies in the study of growth kinetics of CdS x Se1−x QDs. A modeling of PL spectra employing two Gaussian emission bands and a quantized-state effective mass model in the strong confinement regime reveals that (i) the average particle size ranges from 1.7 to 8.5 nm, (ii) the size dispersion narrows down to 0.22 nm for a single sample, and (iii) QDs form by diffusion-limited growth. We presume that size-dependent higher energy PL band close to the asymptotic absorption edge is due to surface-assisted electron-hole recombination since the difference between optical absorption and PL bands decreases from 239 to 122 meV with increasing average radius.  相似文献   

20.
Valenta J  Bruhn B  Linnros J 《Nano letters》2011,11(7):3003-3009
Single silicon nanowires (Si-NWs) prepared by electron-beam lithography and reactive-ion etching are investigated by imaging optical spectroscopy under variable temperatures and laser pumping intensities. Spectral images of individual Si-NWs reveal a large variability of photoluminescence (PL) along a single Si-NW. The weaker broad emission band asymmetrically extended to the high-energy side is interpreted to be due to recombination of quasi-free 1D excitons while the brighter localized emission features (with significantly variable peak position, width, and shape) are due to localization of electron-hole pairs in surface protrusions acting like quasi-0D centers or quantum dots (QDs). Correlated PL and scanning electron microscopy images indicate that the efficiently emitting QDs are located at the Si-NW interface with completely oxidized neck of the initial Si wall. Theoretical fitting of the delocalized PL emission band explains its broad asymmetrical band to be due to the Gaussian size distribution of the Si-NW diameter and reveals also the presence of recombination from the Si-NW excited state which can facilitate a fast capture of excitons into QD centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号