首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor cells that express a fusion gene comprised of Escherichia coli cytosine deaminase (CD) and herpes simplex virus type 1 thymidine kinase (TK) sequences exhibit activation of and subsequent killing by the normally innocuous prodrugs 5-fluorocytosine and ganciclovir (Rogulski et al., Hum. Gene Ther., 8: 73-85, 1997). To target localized expression of this therapeutic gene, we have constructed a recombinant adenovirus containing the CD-TK fusion gene under the control of a human inducible heat shock protein 70 promotional sequence. Strong expression of the fusion gene product was induced by heating at 41 degrees C for 1 h. Expression levels obtained were dependent on the multiplicity of infection used and the incubation time after heat shock. Heat-induced expression of the CD-TK protein significantly reduced the survival of PC-3 cells in the presence of both 5-fluorocytosine and ganciclovir. These studies represent a novel form of gene therapy for the transduction and regulation of a double suicide gene in tumor cells and may provide a unique application for hyperthermia in cancer therapy.  相似文献   

2.
Two obstacles limiting the efficacy of nearly all cancer gene therapy trials are low gene transduction efficiencies and the lack of tumor specificity. Recently, a replication-competent, E1B-attenuated adenovirus (ONYX-015) was developed that could overcome these limitations, because it was capable of efficiently and selectively destroying tumor cells lacking functional p53. In an attempt to improve both the efficacy and safety of this approach, we constructed a similar adenovirus (FGR) containing a cytosine deaminase (CD)/herpes simplex virus type-1 thymidine kinase (HSV-1 TK) fusion gene, thereby allowing for the utilization of double-suicide gene therapy, which has previously been demonstrated to produce significant antitumor effects and potentiate the therapeutic effects of radiation. The FGR virus exhibited the same tumor cell specificity and replication kinetics as the ONYX-015 virus in vitro. Importantly, both the CD/5-FC and HSV-1 TK/GCV suicide gene systems markedly enhanced the tumor cell-specific cytopathic effect of the virus, and, as expected, sensitized tumor cells to radiation. By contrast, neither the FGR virus nor either suicide gene system showed significant toxicity to normal human cells. Both suicide gene systems could be used to suppress viral replication effectively, thereby providing a means to control viral spread. The results support the thesis that the three-pronged approach of viral therapy, suicide gene therapy, and radiotherapy may represent a powerful and safe means of selectively destroying tumor cells in vivo.  相似文献   

3.
We performed a dose-escalating phase I/II study of retrovirus-mediated herpes simplex virus type 1 thymidine kinase (HSV-1-TK) suicide gene therapy for metastatic melanoma. HSV-1 TK expression, which specifically sensitizes transduced and bystander cancer cells to ganciclovir (GCV) toxicity, was mediated by one (four patients, first dose step) to three (four patients, second dose step) injections of "M11" retrovirus vector-producing cells in melanoma cutaneous nodules. After a 7-day period allowed for cancer cell transduction, GCV was administered for 14 days. Safety was assessed by clinical and laboratory evaluations, and efficacy was assessed by tumor measurements and histology. M11 doses ranged from 76 to 1247 x 10(6) cells. Treatment-related adverse events were mild and transient, limited to inflammatory skin reactions at injection and fever on repeated injections. Plasma GCV was in the active range (>0.2 microg/ml); transgene was detected by polymerase chain reaction in three of six patients; treated tumor size was moderately affected under GCV as compared with untreated tumors, although 2 weeks after GCV administration important (>50%) treated-tumor necrosis was evidenced on histology in three of eight patients. All patients showed disease progression on long-term follow-up. Thus, M11-mediated HSV-1 TK gene therapy was well tolerated over a wide dose range. The limited tumor response is likely to be related to poor gene transfer efficiency. However, necrosis following GCV administration in transduced tumors indicates a potential for treatment efficacy.  相似文献   

4.
Past studies have documented the promise of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) suicide gene therapy as a potential antitumor treatment. HSV-TK converts the pro-drug ganciclovir (GCV) into a toxic nucleotide analogue, the incorporation of which into cellular DNA blocks cell proliferation. In this report, we have examined the hypothesis that the effectiveness of HSV-TK suicide gene therapy can be enhanced by coexpression of the antitumor cytokine human tumor necrosis factor-alpha (TNF-alpha) from the same replication-defective HSV-1 vector. In vitro testing demonstrated that TNF-alpha expression from this vector potentiated the killing of both TNF-alpha-sensitive L929 tumor cells and TNF-alpha-resistant U-87 MG cells in the presence of GCV. Furthermore, treatment of established intradermal L929 tumors in vivo with the TNF-alpha/TK vector and GCV resulted in prolonged animal survival compared with treatment with parental HSV-TK vector in the presence or absence of GCV. Treatment of intracerebral U-87 MG tumors showed a clear benefit of TK therapy, but a significant further increase in survival using the TNF-alpha vector could not be demonstrated. We found that potentiation of cell killing in vitro required intracellular TNF-alpha because purified protein added to the culture medium of cells infected with HSV-TK vector failed to have the same effect. Accordingly, potentiation in vivo should depend on efficient infection, but immunohistochemical analysis indicated that virus administration by U-87 MG intratumoral injection was inadequate, resulting in an estimated <1% infection of all tumor cells. Moreover, the majority of infected tumor cells were localized at the tumor margin. Together, these results suggest that TNF-enhanced tk gene therapy should provide a useful treatment for TNF-alpha-sensitive tumors and perhaps also for TNT-alpha-resistant tumors if vector delivery can be improved to increase the percentage of transduced tumor cells.  相似文献   

5.
The herpes simplex virus thymidine kinase (HSV-TK) converts ganciclovir (GCV) into a toxic product and allows selective elimination of TK+ cells in vitro and in vivo. It is currently being used in clinical gene therapy trials as a therapeutic gene or as a safety marker. We have analyzed the susceptibility of different tumor cell lines to the TK/GCV-mediated "suicide" effect. Therefore, tumor cells TSA, J558L, EB, and ESB and, as a control, NIH-3T3 cells were infected with a retrovirus containing a hygromycin/TK fusion gene. All cell lines were sensitive to GCV in vitro; however, the concentration of GCV and the time needed to eliminate tumor cells completely considerably varied between different tumor cell lines. TSA-TK cells were completely eliminated within 10 days in 1 microg/ml GCV, whereas ESB-TK cells required 22 days in 10 microg/ml GCV. When two cell lines were examined, the differing sensitivity to GCV in vitro correlated with the ability to eradicate TK+ tumors in vivo. TSA-TK tumors could be eliminated in almost all animals by systemic GCV administration, whereas ESB-TK tumors were completely resistant. Different sensitivity to GCV was not due to different TK expression levels because the cells were similarly resistant to hygromycin, and Western blot analysis with an anti-TK antiserum revealed similar protein amounts in TSA/TK and ESB-TK cells. Together, the results demonstrate that tumor cells are highly different concerning the susceptibility to the TK/GCV effect, which, however, may be tested for in vitro.  相似文献   

6.
BACKGROUND: The suicide gene and prodrug, herpes simplex thymidine kinase (HStk) and ganciclovir (GCV), are now in clinical trials for recurrent malignancies. METHODS: We evaluated in vitro and in vivo efficacy of HStk gene transfer and GCV treatment of colonic adenocarcinoma in a syngeneic murine model. RESULTS: In vitro analysis demonstrated that CT-26 adenocarcinoma cells transduced with LTKOSN.2 retroviral vector inhibited the proliferation of wild-type CT-26 (nontransduced) cells after GCV exposure. Cooperative killing with HStk gene therapy was shown in vivo, mixtures of HStk CT-26 transduced cells (CT-26 TK), and nontransduced (CT-26 NV) cells and tumors containing only 9% CT-26 TK cells demonstrated complete regression after GCV (100 mg/kg). CONCLUSIONS: This in vitro and in vivo demonstration suggests that metabolic cooperation permits destruction of tumors even when gene transfer is effective only to a relatively small portion of the tumor. These important results suggest new avenues can be developed for the treatment of this lethal malignancy.  相似文献   

7.
The antitumor effect of the combined transfer of a suicide gene and a cytokine gene was evaluated in the present study. Adenoviruses expressing Escherichia coli cytosine deaminase (AdCD) and adenoviruses expressing murine interleukin-2 (AdIL-2) were utilized for the treatment of established tumors. The mice were inoculated s.c. with FBL-3 erythroleukemia cells and 3 days later received an intratumoral injection of AdCD in the presence or absence of AdIL-2 followed by intraperitoneal 5-fluorocytosine (5-FC) administration. The results demonstrated that tumor-bearing mice treated with AdCD/5-FC in combination with AdIL-2 showed more potent inhibition of tumor growth and survived much longer than did mice treated with AdCD/5-FC, AdIL-2, adenovirus expressing beta-galactosidase/5-FC or phosphate-buffered saline. The tumor mass showed obvious necrosis and inflammatory cell infiltration, and more CD4+ and CD8+ T cells infiltrating the tumor after combined therapy. The splenic natural killer and cytotoxic T lymphocyte activities increased significantly in the mice after combined therapy with AdCD/5-FC/AdIL-2. Our results demonstrate that therapy combining a suicide gene and IL-2 gene can inhibit the growth of established tumors in mice significantly and induce antitumor immunity of the host efficiently.  相似文献   

8.
The goal of this work was to identify potential host immune responses to thymidine kinase (TK) suicide gene-modified tumors undergoing chemoablation induced by the prodrug ganciclovir (GCV). The aims were to measure the efficacy and specificity of immunity induced against unmodified tumor, to identify qualitative or quantitative changes in the host response to TK+ tumors undergoing chemoablation that may contribute to the induction of antitumor immunity, and to compare critically the induction of immunity by chemoablation of TK-modified tumors with that of other methods of immunization in this tumor model and in response to other well-defined model antigens. Animals treated with TK+ tumors and GCV developed specific resistance to rechallenge with unmodified tumor. GCV induced significant tumor necrosis, which was associated with a pronounced host cell infiltrate composed of polymorphonuclear cells, both CD4+ and CD8+ T lymphocytes, and increased intratumoral IL-12. Cyclophosphamide-treated mice exhibited no such host response despite the induction of tumor necrosis. CTL responses to defined antigens in TK+ cells were greater in animals treated with prodrug than were those in animals not treated with prodrug but harboring live TK+ cells. Similar degrees of immunity were produced by immunization with irradiated cells.  相似文献   

9.
BACKGROUND: A bacterial enzyme, Escherichia coli cytosine deaminase, which converts the prodrug 5-fluorocytosine into the toxic drug 5-fluorouracil, and a viral enzyme, herpes simplex virus thymidine kinase, which converts ganciclovir from an inactive prodrug to a cytotoxic agent by phosphorylation, are being actively investigated for use in gene therapy for cancer. The purpose of this study was to determine whether combining these prodrug-activating gene therapies might result in enhanced anticancer effects. METHODS: Rat 9L gliosarcoma cells were transfected with plasmids containing the E. coli cytosine deaminase gene (9L/CD cells), with plasmids containing the herpes simplex virus thymidine kinase gene (9L/TK cells), or with both expression plasmids (9L/CD-TK cells). The drug sensitivities of the cell lines were evaluated; in addition, the sensitivities of 9L and 9L/CD-TK cells mixed in varied proportions were measured. The effects of prodrug treatment on 9L/CD-TK tumor growth (i.e., size and volume) in nude mice were monitored. The isobologram method of Loewe and the multiple drug-effect analysis method of Chou-Talalay were used to measure the interaction between the two prodrug-activating gene therapies. To elucidate the mechanism of interaction, the phosphorylation of ganciclovir in 9L/CD-TK cells after varying prodrug treatments was studied. RESULTS AND CONCLUSIONS: The presence of transfected cytosine deaminase and thymidine kinase genes in 9L gliosarcoma cells reduced cell survival, both in vitro and in vivo, following treatment with the relevant prodrugs; the effects of the two components appeared to be synergistic and related mechanistically to the enhancement of ganciclovir phosphorylation by thymidine kinase following 5-fluorouracil treatment.  相似文献   

10.
Green fluorescent protein (GFP) and herpes simplex virus type-I thymidine kinase (TK) are commonly used markers in gene transfer studies. The latter gene has also proven to be an effective tool in cancer "suicide" gene therapy. To facilitate rapid and reliable selection of cells expressing TK, we constructed a plasmid expressing a TK-green fluorescent protein fusion gene (TK-GFP). In this fusion gene, the expression of each component is coupled to one another, permitting accurate determination of the percentage of cells expressing TK by detecting the green fluorescence produced by GFP. Transfection of the fusion plasmid to mammalian cells revealed that the construct is fully functional, making the cells both fluorescent and sensitive to ganciclovir.  相似文献   

11.
The "Fab immunogene" is a novel gene transfer vehicle in which the Fab fragment of anti-human epidermal growth factor (EGF) receptor antibody B4G7 is conjugated with poly-L-lysine to form an affinity complex with DNA. It was developed to target delivery of therapeutic genes into EGF receptor-hyperproducing tumor cells. Various characteristic features of the immunogene have been documented (Chen et al., 1998). Here we add further evidence to prove that in vitro transfer of beta-galactosidase/Fab immunogene is exclusively to EGF receptor-positive cells and that the herpes simplex virus thymidine kinase (TK)/Fab immunogene induces substantial suicide effects on A431 tumor cells when treated together with ganciclovir. The in vivo specificity of the immunogene transfer was examined using A431 tumor-bearing nude mice. When these nude mice were injected intraperitoneally with the chloramphenicol acetyltransferase (CAT)/Fab immunogene, CAT DNA was detected in the tumors as well as in liver and kidney but not brain, whereas CAT mRNA and enzyme activity were detected only in the tumors. Local and intraperitoneal injection of the TK/Fab immunogene and subsequent administration of ganciclovir effectively suppressed the growth of A431 tumors transplanted on the backs of nude mice. These observations suggest a possible application of the Fab immunogene system in cancer gene therapy.  相似文献   

12.
Despite extensive surgery for glioblastoma, residual tumor cells always lead to relapse. Gene therapy based on retrovirus-mediated gene transfer of herpes simplex virus type 1 thymidine kinase (HSV-1 TK), which specifically sensitizes dividing cells to ganciclovir (GCV) toxicity, may help eradicate such cells. During glioblastoma surgery, HSV-1 TK retroviral vector-producing cells (M11) were injected into the surgical cavity margins after tumor debulking. After a 7-day transduction period, GCV was administered for 14 days. Safety was assessed by clinical and laboratory evaluations, and efficacy was assessed by MRI-based relapse-free survival at month 4 and by overall survival. Twelve patients with recurrent glioblastoma were treated without serious adverse events related to M11 cell administration or GCV. Quality of life was not negatively influenced by this treatment. Overall median survival was 206 days, with 25% of the patients surviving longer than 12 months. At 4 months after treatment, 4 of 12 patients had no recurrence; their median overall survival was 528 days, compared with 194 days for patients with recurrence (p=0.03 by the log rank test). One patient is still free of detectable recurrence, steroid free and independent, 2.8 years after treatment. Thus, brain injections of M11 retroviral vector-producing cells for glioblastoma HSV-1 TK gene therapy were well tolerated and associated with significant therapeutic responses. These results warrant further development of this therapeutic strategy in brain tumor, including recurrent glioblastoma.  相似文献   

13.
Gene therapy with retroviral mediated gene transfer of the herpes simplex thymidine kinase (HS-tk) gene into a tumor mass confers sensitivity of the tumor cells to ganciclovir (GCV). Tumor-specific immunologic responses may develop following treatment of the primary tumor with retroviral HS-tk and GCV. In the present study we assessed whether GCV treatment of HS-tk transduced colon cancer (TK+) implanted in the peritoneal cavity induced a systemic antitumor response that would inhibit growth of a second wild-type (TK-) tumor implanted in the liver. DHDK12 rat colon cancer cells were transduced in vitro with the retroviral HS-tk vector and established as a permanent cell line (TK+ cells). TK+ or TK- DHDK12 cells (6x10(6) cells) were injected intraperitoneally on day 0 into BD-IX rats. On day 10, TK- cells (3x10(6) cells) were injected into the liver in all the groups. The animals were then treated with GCV (150 mg/kg) for 13 days. TK+ peritoneal tumors underwent significant regression during therapy with GCV (0.05+/-0.004 g; n=7) compared to wild-type (TK-) tumors (2.2+/-0.7g; n=6) (P<0.05). The volume of TK- tumors in the liver was significantly lower in GCV-treated rats with TK+ peritoneal tumors (12.5+/-8.3 mm3) compared to rats with TK- peritoneal tumors (96.7+/-18.1 mm3) (P<0.05). Histology of the liver tumors in the TK+ groups showed a dense monocytic infiltrate with fibrosis and only occasional viable tumor cells. Gene therapy with retroviral HS-tk vectors may provide a novel approach to treatment of gastrointestinal cancer by both direct cytotoxicity and an indirect mechanism that may include enhanced immuno logic responses against disseminated disease.  相似文献   

14.
After they have been transfected with the herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2) thymidine kinase (TK) gene murine mammary carcinoma (FM3A) cells become highly sensitive to the growth inhibitory properties of the antiherpetic agents (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU), 9(-)[(2-hydroxyethoxy)methyl]guanine (acyclovir, ACV), 9(-)[(1,3-dihydroxy-2-propoxy)methyl]guanine (DHPG, ganciclovir), and 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-methyluracil (FMAU). BVDU was 100-fold more potent an inhibitor of HSV TK gene-transfected tumor cell growth (50% inhibitory concentration (IC50), 0.0020-0.0047 microM) than FMAU or DHPG (IC50, 0.051-0.277 microM) and 1000-fold more potent than ACV (IC50, 0.42-4.9 microM). As a rule, the test compounds were more cytostatic to HSV-2 TK than HSV-1 TK gene-transfected FM3A cells. This may be ascribed to the higher phosphorylating capacity (Vmax/Km) of HSV-2 TK than HSV-1 TK and/or to the higher TK enzyme levels of the HSV-2 TK gene-transfected FM3A cells than the HSV-1 TK gene-transfected FM3A cells. Thymidylate synthase of the HSV TK gene-transfected FM3A cells appears to be the target enzyme for the cytostatic action of BVDU, but not FMAU, DHPG, or ACV. Instead, the cytostatic activity of DHPG seems to be correlated with its conversion to the triphosphate form and subsequent incorporation into the DNA of HSV TK gene-transfected FM3A cells.  相似文献   

15.
We report virus-free transfer of a "suicide" gene into tumoral cells. The system can be used in vitro or in vivo to induce tumor cell death. A plasmid carrying the herpes simplex virus thymidine kinase (HSV-TK) gene with its 5'- and 3'-flanking regions was used both alone and in liposomes to transduce B16 cells. In vitro, a 5-day treatment with ganciclovir after transfection with the HSV-TK gene in liposomes induced a significant lysis of B16 melanoma cells as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. The efficacy of transfection was determined using liposomes harboring the beta-galactosidase reporter gene and was around 10%. Thus, the cytotoxicity observed resulted presumably from a large bystander effect. In vivo, direct transfer of the TK DNA into established B16 melanoma tumors in C57B6 mice followed by i.p. ganciclovir treatment induced a 50% reduction of tumor weight after 8 days and an increased necrosis. Despite the use of the nonspecific strong TK promoter, no necrosis was detected in normal tissues surrounding the tumor or elsewhere. Thus, this system of tumor transfection, which does not involve any viral vector, is safe and straightforward and seems to be suitable for testing in clinical trials.  相似文献   

16.
Recently, use of the suicide gene, cytosine deaminase (CD), has shown a selective antitumor activity of 5-fluorocytosine (5-FC) on human colorectal carcinoma cells grown in vitro and in vivo. We hypothesized that the radiosensitivity of human colorectal carcinoma cells transduced with a retroviral vector encoding the bacterial CD gene would be selectively enhanced by the nontoxic prodrug 5-FC. The radiobiological rationale of using suicide gene therapy is based on the fact that a toxic metabolite of 5-FC, 5-fluorouracil, is a well-known radiation enhancer for the treatment of gastrointestinal and other tumors. 5-FC was found to enhance selectively the radiation cytotoxicity of human colorectal carcinoma cells expressing the CD gene. Colorectal carcinoma cells transduced with the CD gene (WiDr-CD) were highly sensitive to radiation compared with parental cells (WiDr) when exposed to 20 microgram/ml 5-FC for 72 h prior to irradiation. The sensitization enhancement ratio was 2.38. This magnitude of radiation enhancement is comparable to that obtained with 5-fluorouracil. These results suggest that the addition of radiation would substantially improve the therapeutic potential of CD gene therapy for the treatment of locally advanced colorectal carcinomas.  相似文献   

17.
We examined the efficacy of suicide gene therapy for nitrosomethylurea-induced mammary tumors in rats. Individual tumors were directly injected with a retrovirus-producing cell line that releases retroviral vectors that transduce the herpes simplex virus type 1 thymidine kinase (HSV1-TK) gene. HSV1-TK specifically converts the nucleoside analogue ganciclovir (GCV) into a toxic metabolite. Compared to control rats receiving saline, we observed a significant tumor regression of the injected tumors following GCV administration, accompanied by a stromal inflammation and an extensive lymphocyte infiltration invading the tumor epithelium. It is noteworthy that the neighboring uninjected tumors also regressed, demonstrating the occurrence of a distant bystander effect. This is the first demonstration that HSV1-TK/GCV can efficiently treat multiple solid tumors directly generated from an epithelial tissue.  相似文献   

18.
Gene transfer with vectors derived from murine retroviruses is restricted to cells which are proliferating and synthesizing DNA at the time of infection. This suggests that retroviral-mediated gene transfer might permit targeting of gene integration into malignant cells in organs composed mainly of quiescent nonproliferating cells, such as in the brain. Accordingly, selective introduction of genes encoding for susceptibility to otherwise nontoxic drugs ("suicide" genes) into proliferating brain tumors may be used to treat this cancer. We investigated the efficacy and dynamics of in vivo transduction of growing brain tumors with the herpes simplex-thymidine kinase gene followed by administration of the antiviral drug ganciclovir. Ganciclovir is phosphorylated by thymidine kinase to toxic triphosphates that interfere with DNA synthesis, resulting in the preferential death of the transduced tumor cells. Rats inoculated with 4 x 10(4) 9L gliosarcoma cells into the frontal lobe were treated 7 days later with an intratumoral stereotaxic injection of murine fibroblasts (NIH 3T3 cells) that were producing a retroviral vector containing the herpes simplex-thymidine kinase gene. Controls received vector producer and nonproducer NIH 3T3 cell lines containing the Escherichia coli lacZ (beta-galactosidase) gene as well as nonproducer NIH 3T3 cells containing the thymidine kinase gene. The animals were rested for 7 days to allow time for in situ transduction of the proliferating tumor cells with the herpes-thymidine kinase retroviral vector. The animals were then treated with ganciclovir, 15 mg/kg i.p. twice a day for 14 days. Gliomas receiving an injection of 3-5 x 10(6) thymidine kinase producer cells regressed completely in 23 of 30 rats given ganciclovir therapy, while 25 of 26 control rats developed large tumors. Intratumoral injection of a lower concentration of thymidine kinase vector producer cells (1.8 x 10(6)) resulted in a lower frequency of tumor regression (5 of 13 rats). To estimate the efficiency of in vivo gene transfer, 9L brain tumors were given injections of 5 x 10(6) beta-galactosidase vector producer cells. 5-Bromo-4-chloro-3-indolyl-beta-D-galactopyranaside staining revealed maximal staining of beta-galactosidase within the tumor 7-14 days after injection of the vector producer cells. In vivo transduction rates in harvested tumors ranged from 10 to 70%. There was no evidence of transduction of the surrounding normal neural tissue. Occasional blood vessel endothelial cells within or adjacent to the tumor were observed to be 5-bromo-4- chloro-3-indolyl-beta-D-galactopyranaside positive.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Herpes simplex virus thymidine kinase (HSV-tk) gene therapy for brain tumors depends on ganciclovir (GCV) and its transport across the blood-brain tumor barrier (BBTB). We examined whether RMP-7, the bradykinin analog and potent BBTB permeabilizer, could enhance the efficacy of GCV treatment of brain tumors by increasing the BBTB delivery of GCV. In vitro, a significant bystander cytocidal effect of GCV was shown in mixed HSV-tk-transduced (HSV-tk+) and control vector-transduced (HSV-tk-) C6 glioma cultures. A dose-dependent cytotoxic effect of GCV on untransformed C6 cells was also shown. In vivo, rats with 100% HSV-tk+ or 100% HSV-tk- intracerebral C6 gliomas were treated for 7 days with intravenous infusions of GCV alone or with GCV and RMP-7 (2.5 microg/kg/day). The growth of HSV-tk+ and HSV-tk- gliomas decreased with increasing doses of GCV. A high dosage (100 mg of GCV/kg/day) eradicated all HSV-tk- and HSV-tk+ tumors. An intermediate dosage (5 mg of GCV/kg/day) reduced the growth of HSV-tk- gliomas by 42% if given alone, and by 88% in combination with RMP-7. A low dosage (0.5 mg of GCV/kg/day) in combination with RMP-7 enhanced the regression of HSV-tk+ gliomas by 87% compared with GCV alone. Low-dose GCV was ineffective in HSV-tk- tumors. RMP-7 increased [3H] GCV tumoral uptake by 2.6- and 1.7-fold in the tumor center and periphery, respectively. We conclude that RMP-7 could be an important adjunctive treatment for suicide gene therapy of brain tumors, while an RMP-7/GCV combination may also have a significant antitumor effect in untransfected gliomas.  相似文献   

20.
The enormous number of newly diagnosed cases of colorectal cancer that occur each year and the lack of agents that are highly effective for all patients underscore the need for novel approaches to combating the disease. Gene therapy as a developing treatment modality is already well established, with a number of trials ongoing and a vast range of other approaches being assessed in animal and cell culture experiments. In this brief review, we have discussed five gene therapy trials in colon carcinoma that are ongoing or in the approval process in the United States. The gene therapy approaches being employed can be divided into three major categories: (1) enzyme/prodrug systems (HSVtk/ganciclovir; CD/5-fluorocytosine); (2) tumor suppressor gene replacement therapy with wild-type p53; and (3) immune-gene therapy which is based on cytokine or tumor antigen expression to induce tumor immunity (e.g., CEA). Replication-deficient recombinant adenoviral vectors are predominantly used for colon cancer gene therapy, because they can be produced at high titer and they readily infect a number of different cell types. One trial uses polynucleotide therapy for antitumor immunization with intramuscular injection. All of these studies are phase I trials, principally designed to evaluate safety, but they will also provide data on gene delivery. Some trials may provide some insight into potential therapeutic effects. We have alluded to some of the concerns on toxicity related to the use of adenovirus, risks and side effects from transgenes, lack of tumor-specificity of transgene expression, and potential problems with efficient gene delivery to solid tumors. The clinical trials, however, will provide insight that will inform design of future studies with respect to dose, form, and frequency of administration, as well as to the value of biologic and clinical endpoints. The molecular analysis of the fundamental basis of colon cancer has moved at a remarkable pace and that progress seems set to continue. Thus, the basic foundations for gene therapy are undoubtedly in place: a clinical need; growing understanding of basic tumor biology; and ever-improving delivery systems. The field is at a very early stage in its evolution, and one concern is that the considerable hurdles that must be overcome are seen as examples of the failure of cancer gene therapy; however, we believe these challenges will be overcome. The authors also believe that colon cancer gene therapy is likely to take new directions, such as use as adjuvant to radical surgery, rather than attempts to treat end-stage disease when the liver is replaced by metastases. Other new directions might include prophylactic gene-based immunization against a panel of well-characterized tumor antigens, at least for persons shown to be at high risk of colon cancer because of genetic or other predisposition. A marriage between gene therapy approaches and conventional anticancer treatments such as radiotherapy and chemotherapy also seems likely. There is already evidence of this move with demonstration of synergism between p53 replacement and radiotherapy and chemotherapy. It is also likely that therapies will be developed that combine elements from the cancer gene therapies discussed previously, namely, suicide gene transfer, immune modulation, and modulation of defective cancer genes. Perhaps one of the main concerns is not that researchers in cancer gene therapy want to walk before they can run, but that the public and government agencies believe they can. The next 10 years will be an interesting time in the development of novel treatments against colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号