首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electrocardiogram (ECG ) signal is prone to various high and low frequency noises, including baseline wandering and power-line interference, which become the source of errors in QRS and in other extracted features. This paper presents a new ECG signal-processing approach based on empirical mode decomposition (EMD) and an improved approximate envelope method. To reduce the number of the initial intrinsic mode functions (IMFs), a Butterworth lowpass filter is used to eliminate high frequency noises before the EMD. To correct baseline wandering and to eliminate low frequency noises, the two last-order IMFs are abandoned. An improved approximate envelope is proposed and applied after the Hilbert transform to enhance the energy of QRS complexes and to suppress unwanted P/T waves and noises. Then, an algorithm based on the slope threshold is used for R-peak detection. The proposed denoising and R-peak detection algorithm are validated using the MIT-BIH Arrhythmia Database. The simulation results show that the proposed method can effectively eliminate the Gaussian noise, baseline wander, and power-line interference added to the ECG signal. The method can also function reliably even under poor signal quality and with long P and T peaks. The QRS detector has an average sensitivity of Se=99.94 % and a positive predictivity of +P=99.87 % over the first lead of the MIT-BIH Arrhythmia Database.  相似文献   

2.
孙一  齐林 《通信技术》2009,42(11):168-170
文中将小波变换和扩展卡尔曼滤波器相结合,利用小波变换多尺度多分辨的特点,将心电信号进行分解。然后对心电信号在各尺度上进行扩展卡尔曼滤波。最后在扩展卡尔曼滤波的输出结果上进行QRS波形检测。文中方法经MIT-BIH心电数据库检验,QRS波Se(探测灵敏度)在99.40%以上,同时,QRS+P(正探测率)在99.39%以上,提高了心电信号检测的正确率。  相似文献   

3.
季虎  毛玲  孙即祥 《信号处理》2007,23(3):444-447
基于希尔波特(Hilbert)变换性质和自适应阈值检测原理,本文提出一种新的心电信号R检测算法。该方法经MIT-BIH心电数据库数据验证,可有效降低基线漂移和高频噪声的干扰,克服高大P波和T波的影响,准确检测率在99.84%以上,算法简单,实时性好。  相似文献   

4.
基于小波变换的自适应QRS-T对消P波检测算法   总被引:2,自引:0,他引:2  
该文提出一种基于小波变换的自适应QRS-T对消P波检测算法。首先采用二进Marr小波的Mallat算法对心电信号作多尺度分解,在每个尺度下只保留超过一定阈值的小波模极大值点,其它点置零处理。在小波分解的3,4尺度下检测QRS波群,并根据心拍节律信息和QT间期,将QRS-T波群所对应的小波模极大值点进行自适应对消,最后对包含P波的剩余信号进行非线性放大,利用小波模极大值的自适应阈值检测方法定位P波。该方法经MIT-BIH心电数据库数据验证,取得了满意的结果。  相似文献   

5.
P, T波的检测在临床上是心血管疾病诊断的重要依据。由于其波形能量低、形态复杂,极易受到噪声干扰,导致现有检测算法精度仍有待提高。该文提出平稳和连续小波变换融合算法检测P, T波,利用连续小波变换的多尺度信息,获取心电图(ECG)信号中P, T波主要成分,融合其平稳小波对P, T波候选段进行平滑处理,消除波形中锯齿状毛刺对峰值点检测的影响,最后对P, T波过零点进行时移修正,保证过零点还原到原始信号过程中能够准确对应其峰值点,从而提高P, T波检测精度。该文算法在MIT-BIH arrhythmic数据库上进行验证,最终P波的误差率、敏感度、正确预测度达到:0.23%, 99.85%, 99.90%;T波的误差率、敏感度、正确预测度达到0.27%, 99.85%, 99.87%。  相似文献   

6.
P, T波的检测在临床上是心血管疾病诊断的重要依据。由于其波形能量低、形态复杂,极易受到噪声干扰,导致现有检测算法精度仍有待提高。该文提出平稳和连续小波变换融合算法检测P, T波,利用连续小波变换的多尺度信息,获取心电图(ECG)信号中P, T波主要成分,融合其平稳小波对P, T波候选段进行平滑处理,消除波形中锯齿状毛刺对峰值点检测的影响,最后对P, T波过零点进行时移修正,保证过零点还原到原始信号过程中能够准确对应其峰值点,从而提高P, T波检测精度。该文算法在MIT-BIH arrhythmic数据库上进行验证,最终P波的误差率、敏感度、正确预测度达到:0.23%, 99.85%, 99.90%;T波的误差率、敏感度、正确预测度达到0.27%, 99.85%, 99.87%。  相似文献   

7.
心电信号分析是预防心血管疾病的重要举措,QRS波的精确检测不仅是心电信号处理的关键步骤且对心率计算和异常情况分析具有重要作用.针对动态心电信号存在信号质量差或异常节奏波形导致常用QRS波检测方法精度较低的问题,本文提出了 一种基于生成对抗网络新型QRS波检测算法.该算法以Pix2Pix网络为基础,生成网络采用U-Net...  相似文献   

8.
This paper presents hybrid approaches for human identification based on electrocardiogram (ECG). The proposed approaches consist of four phases, namely data acquisition, preprocessing, feature extraction and classification. In the first phase, data acquisition phase, data sets are collected from two different databases, ECG-ID and MIT-BIH Arrhythmia database. In the second phase, noise reduction of ECG signals is performed by using wavelet transform and a series of filters used for de-noising. In the third phase, features are obtained by using three different intelligent approaches: a non-fiducial, fiducial and a fusion approach between them. In the last phase, the classification approach, three classifiers are developed to classify subjects. The first classifier is based on artificial neural network (ANN). The second classifier is based on K-nearest neighbor (KNN), relying on Euclidean distance. The last classifier is support vector machine (SVM) classification accuracy of 95% is obtained for ANN, 98 % for KNN and 99% for SVM on the ECG-ID database, while 100% is obtained for ANN, KNN, and SVM on MIT-BIH Arrhythmia database. The results show that the proposed approaches are robust and effective compared with other recent works.  相似文献   

9.
包志强  罗小宏  吕少卿  黄琼丹 《信号处理》2019,35(12):1959-1968
针对心电信号R波的突变特性,利用雷达信号的检测方法,本文提出一种自适应单元平均恒虚警率(cell averaging-constant false alarm rate, CA-CFAR)的R波检测方法。首先利用滤波器组对心电信号进行预处理;然后将预处理后的信号利用自适应CA-CFAR检测判决;最后由心电信号R波的间隔特性做一个不应期剔除规则的处理,得到R波的定位。对美国麻省理工学院提供的MIT-BIH数据库中心电图(Electrocardiograph, ECG)信号仿真,实验证明,自适应参考单元的CA-CFAR对MIT-BIH的ECG信号R波检测的精准率为99.842%,检测误差为0.354%。实测数据表明了算法的有效性和适用性。   相似文献   

10.
Detection of ECG characteristic points using wavelet transforms   总被引:25,自引:0,他引:25  
An algorithm based on wavelet transforms (WT's) has been developed for detecting ECG characteristic points. With the multiscale feature of WT's, the QRS complex can be distinguished from high P or T waves, noise, baseline drift, and artifacts. The relation between the characteristic points of ECG signal and those of modulus maximum pairs of its WT's is illustrated. By using this method, the detection rate of QRS complexes is above 99.8% for the MIT/BIH database and the P and T waves can also be detected, even with serious base line drift and noise  相似文献   

11.
Emerging body sensor networks (BSN) provide solutions for continuous health monitoring at anytime and from anywhere. The implementation of these monitoring solutions requires wearable sensor devices and thus creates new technology challenges in both software and hardware. This paper presents a QRS detection method for wearable Electrocardiogram (ECG) sensor in body sensor networks. The success of proposed method is based on the combination of two computationally efficient procedures, i.e., single-scale mathematical morphological (MM) filter and approximated envelope. The MM filter removes baseline wandering, impulsive noise and the offset of DC component while the approximated envelope enhances the QRS complexes. The performance of the algorithm is verified with standard MIT-BIH arrhythmia database as well as exercise ECG data. It achieves a low detection error rate of 0.42% based on the MIT-BIH database.  相似文献   

12.
In this study, we aimed at determining how many leads are necessary for accurately reconstructing ECG potentials during atrial fibrillation (AF) on the body surface. Although the standard ECG is appropriate for the detection of this arrhythmia, its accuracy for extracting other diagnostic features or constructing surface potential maps may not be optimal. We evaluated the suitability of the standard ECG in AF and proposed a new lead system for improving the information content of AF signals in limited lead systems. We made use of 64-lead body surface potential mapping recordings of 17 patients during AF and 18 healthy subjects. Lead selection was performed by making use of a lead selection algorithm proposed by Lux, and error curves were calculated for increasing number of selected leads for QRS complexes and P waves from healthy subjects and AF signals. From our results, at least 23 leads are needed in order to have the same degree of accuracy in the derivation of AF waves as the 12-lead ECG for a normal QRS complex (25% error). The 12-lead ECG allows a reconstruction of surface potentials with 53% error. If a limited lead set is to be chosen, a repositioning of only four electrodes from the standard ECG reduces reconstruction error in 11%. This repositioning of electrodes may include more right anterior electrodes and one posterior electrode.  相似文献   

13.
Analysis of ECG from pole-zero models   总被引:2,自引:0,他引:2  
A complete solution to the fundamental problem of ECG analysis, viz., delineation of the signal into its component waves, is proposed from a system theoretic point of view. The discrete cosine transform of a bell shaped biphasic function is approximated mathematically by a system function with two poles and two zeros, i.e., of order (2, 2). Using this concept as the basis, a pole-zero model of suitable order is derived from the discrete cosine transform (DCT) of the given signal using Steiglitz-McBride method. This model is expanded into a unique set of partial fractions each of order (2, 2), and a biphasic function is recovered from each one of these fractions in the inverse process. Each of the P and T waves usually requires only one biphasic function, while the QRS complex needs two or at most three such fractions. A one-to-one relationship between the pole pattern in the z-plane and component wave pattern in the time signal is established. Results of analysis of continuous strips of ECG show that the delineated component waves are in excellent agreement with the original waves both qualitatively and quantitatively. The method is robust for the analysis of signals with artifacts of various kinds, independent of the sampling rate used, and is free from ad hoc back and forth search procedures.  相似文献   

14.
In this study, a new compression algorithm for ECG signal is proposed based on selecting important subbands of wavelet packet transform (WPT) and applying subband-dependent quantization algorithm. To this end, first WPT was applied on ECG signal and then more important subbands are selected according to their Shannon entropy. In the next step, content-based quantization and denoising method are applied to the coefficients of the selected subbands. Finally, arithmetic coding is employed to produce compressed data. The performance of the proposed compression method is evaluated using compression rate (CR), percentage root-mean-square difference (PRD) as signal distortion, and wavelet energy-based diagnostic distortion (WEDD) as diagnostic distortion measures on MIT-BIH Arrhythmia database. The average CR of the proposed method is 29.1, its average PRD is <2.9 % and WEDD is <3.2 %. These results demonstrated that the proposed method has a good performance compared to the state-of-the-art compression algorithms.  相似文献   

15.
Automatic detection of atrial fibrillation (AF) for AF diagnosis, especially for AF monitoring, is necessarily desirable for clinical therapy. In this study, we proposed a novel method for detection of the transition between AF and sinus rhythm based on RR intervals. First, we obtained the delta RR interval distribution difference curve from the density histogram of delta RR intervals, and then detected its peaks, which represented the AF events. Once an AF event was detected, four successive steps were used to classify its type, and thus, determine the boundary of AF: 1) histogram analysis; 2) standard deviation analysis; 3) numbering aberrant rhythms recognition; and 4) Kolmogorov-Smirnov (K-S) test. A dataset of 24-h Holter ECG recordings (n = 433) and two MIT-BIH databases (MIT-BIH AF database and MIT-BIH normal sinus rhythm (NSR) database) were used for development and evaluation. Using the receiver operating characteristic curves for determining the threshold of the K-S test, we have achieved the highest performance of sensitivity and specificity (SP) (96.1% and 98.1%, respectively) for the MIT-BIH AF database, compared with other previously published algorithms. The SP was 97.9% for the MIT-BIH NSR database.  相似文献   

16.
ECG signal compression using analysis by synthesis coding   总被引:6,自引:0,他引:6  
In this paper, an elecrocardiogram (ECG) compression algorithm, called analysis by synthesis ECG compressor (ASEC), is introduced. The ASEC algorithm is based on analysis by synthesis coding, and consists of a beat codebook, long and short-term predictors, and an adaptive residual quantizer. The compression algorithm uses a defined distortion measure in order to efficiently encode every heartbeat, with minimum bit rate, while maintaining a predetermined distortion level. The compression algorithm was implemented and tested with both the percentage rms difference (PRD) measure and the recently introduced weighted diagnostic distortion (WDD) measure. The compression algorithm has been evaluated with the MIT-BIH Arrhythmia Database. A mean compression rate of approximately 100 bits/s (compression ratio of about 30:1) has been achieved with a good reconstructed signal quality (WDD below 4% and PRD below 8%). The ASEC was compared with several well-known ECG compression algorithms and was found to be superior at all tested bit rates. A mean opinion score (MOS) test was also applied. The testers were three independent expert cardiologists. As in the quantitative test, the proposed compression algorithm was found to be superior to the other tested compression algorithms.  相似文献   

17.
One of the main points of interest in the study of the dynamic behaviour of ECG time intervals is the accuracy with which characteristic moments can be estimated in the various waveform segments such as the P wave or QRS complex. In this study, the error involved in such estimation is regarded as due to the superposition of various types of disturbances (noise, hum and fluctuations in amplitude and symmetry) on a supposedly ideal ECG waveform. The effect of these disturbances on estimation accuracy is investigated for three estimation methods (peak estimation, double level estimation and matched filter estimation) by two different approaches; one based on use of a highly simplified theoretical model permitting the derivation of mathematical expressions for the estimation error, and one involving computer-aided simulation of ECG waveforms, based on real ECG data, with various types of disturbances on the basis of recorded ECG data. Both approaches indicate that noise and hum make the main contribution to estimation error, and that matched filter estimation is likely to give best estimation accuracy for both P waves and QRS complexes.  相似文献   

18.
A novel method for detecting ventricular premature contraction (VPC) from the Holter system is proposed using wavelet transform (WT) and fuzzy neural network (FNN). The basic ideal and major advantage of this method is to reuse information that is used during QRS detection, a necessary step for most ECG classification algorithm, for VPC detection. To reduce the influence of different artifacts, the filter bank property of quadratic spline WT is explored. The QRS duration in scale three and the area under the QRS complex in scale four are selected as the characteristic features. It is found that the R wave amplitude has a marked influence on the computation of proposed characteristic features. Thus, it is necessary to normalize these features. This normalization process can reduce the effect of alternating R wave amplitude and achieve reliable VPC detection. After normalization and excluding the left bundle branch block beats, the accuracies for VPC classification using FNN is 99.79%. Features that are extracted using quadratic spline wavelet were used successfully by previous investigators for QRS detection. In this study, using the same wavelet, it is demonstrated that the proposed feature extraction method from different WT scales can effectively eliminate the influence of high and low-frequency noise and achieve reliable VPC classification. The two primary advantages of using same wavelet for QRS detection and VPC classification are less computation and less complexity during actual implementation.  相似文献   

19.
The design, test methods, and results of an ambulatory QRS detector are presented. The device is intended for the accurate measurement of heart rate variability (HRV) and reliable QRS detection in both ambulatory and clinical use. The aim of the design work was to achieve high QRS detection performance in terms of timing accuracy and reliability, without compromising the size and power consumption of the device. The complete monitor system consists of a host computer and the detector unit. The detector device is constructed of a commonly available digital signal processing (DSP) microprocessor and other components. The QRS detection algorithm uses optimized prefiltering in conjunction with a matched filter and dual edge threshold detection. The purpose of the prefiltering is to attenuate various noise components in order to achieve improved detection reliability. The matched filter further improves signal-to-noise ratio (SNR) and symmetries the QRS complex for the threshold detection, which is essential in order to achieve the desired performance. The decision for detection is made in real-time and no search-back method is employed. The host computer is used to configure the detector unit, which includes the setting of the matched filter impulse response, and in the retrieval and postprocessing of the measurement results. The QRS detection timing accuracy and detection reliability of the detector system was tested with an artificially generated electrocardiogram (EGG) signal corrupted with various noise types and a timing standard deviation of less than 1 ms was achieved with most noise types and levels similar to those encountered in real measurements. A QRS detection error rate (ER) of 0.1 and 2.2% was achieved with records 103 and 105 from the MIT-BIH Arrhythmia database, respectively  相似文献   

20.
We developed a two-dimensional ventricular tissue model in order to probe the determinants of electrocardiographic (ECG) morphology during acute and chronic ischemia. Hyperkalemia was simulated by step changes in [K+]out, while acidosis was induced by reducing Na+ and Ca2+ conductances. Hypoxia was introduced by its effect on potassium activity. During the initial moments of ischemia, ECG changes were characterized by increases in QRS amplitude and ST segment shortening, followed in the advanced phase by ST baseline elevation, T conformation changes, widening of the QRS and significant decreases in QRS amplitude in spite of an enlarged Q. During each phase, potential proarrhythmic mechanisms were investigated. The presence of unexcitable regions of simulated myocardial infarction led to polymorphic ECG. We also observed a nonuniform deflection of the ST segment from beat to beat. We used similar protocols to explore the responses of infarcted myocardium after impairment resolving. We found that despite irreversible uncoupling of the necrotic region, the restored normal ionic concentrations produced an isopotential ST segment and monomorphic ECG complexes, while an enlarged Q wave was still visible. In summary, these numerical experiments indicate the possibility to track in the ECG pathologic changes following the altered electrophysiology of the ischemic heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号