共查询到20条相似文献,搜索用时 12 毫秒
1.
Sánchez-Plata MX Amézquita A Blankenship E Burson DE Juneja V Thippareddi H 《Journal of food protection》2005,68(12):2594-2605
Spores of foodborne pathogens can survive traditional thermal processing schedules used in the manufacturing of processed meat products. Heat-activated spores can germinate and grow to hazardous levels when these products are improperly chilled. Germination and outgrowth of Clostridium perfringens spores in roast beef during chilling was studied following simulated cooling schedules normally used in the processed-meat industry. Inhibitory effects of organic acid salts on germination and outgrowth of C. perfringens spores during chilling and the survival of vegetative cells and spores under abusive refrigerated storage was also evaluated. Beef top rounds were formulated to contain a marinade (finished product concentrations: 1% salt, 0.2% potassium tetrapyrophosphate, and 0.2% starch) and then ground and mixed with antimicrobials (sodium lactate and sodium lactate plus 2.5% sodium diacetate and buffered sodium citrate and buffered sodium citrate plus 1.3% sodium diacetate). The ground product was inoculated with a three-strain cocktail of C. perfringens spores (NCTC 8238, NCTC 8239, and ATCC 10388), mixed, vacuum packaged, heat shocked for 20 min at 75 degrees C, and chilled exponentially from 54.5 to 7.2 degrees C in 9, 12, 15, 18, or 21 h. C. perfringens populations (total and spore) were enumerated after heat shock, during chilling, and during storage for up to 60 days at 10 degrees C using tryptose-sulfite-cycloserine agar. C. perfringens spores were able to germinate and grow in roast beef (control, without any antimicrobials) from an initial population of ca. 3.1 log CFU/g by 2.00, 3.44, 4.04, 4.86, and 5.72 log CFU/g after 9, 12, 15, 18, and 21 h of exponential chilling. A predictive model was developed to describe sigmoidal C. perfringens growth curves during cooling of roast beef from 54.5 to 7.2 degrees C within 9, 12, 15, 18, and 21 h. Addition of antimicrobials prevented germination and outgrowth of C. perfringens regardless of the chill times. C. perfringens spores could be recovered from samples containing organic acid salts that were stored up to 60 days at 10 degrees C. Extension of chilling time to > or =9 h resulted in >1 log CFU/g growth of C. perfringens under anaerobic conditions in roast beef. Organic acid salts inhibited outgrowth of C. perfringens spores during chilling of roast beef when extended chill rates were followed. Although C. perfringens spore germination is inhibited by the antimicrobials, this inhibition may represent a hazard when such products are incorporated into new products, such as soups and chili, that do not contain these antimicrobials, thus allowing spore germination and outgrowth under conditions of temperature abuse. 相似文献
2.
Survival and germination of Clostridium perfringens spores during heating and cooling of ground pork
Márquez-González M Cabrera-Díaz E Hardin MD Harris KB Lucia LM Castillo A 《Journal of food protection》2012,75(4):682-689
The effect of heating rate on the heat resistance, germination, and outgrowth of Clostridium perfringens spores during cooking of cured ground pork was investigated. Inoculated cured ground pork portions were heated from 20 to 75°C at a rate of 4, 8, or 12°C/h and then held at 75°C for 48 h. No significant differences (P > 0.05) in the heat resistance of C. perfringens spores were observed in cured ground pork heated at 4, 8, or 12°C/h. At heating rates of 8 and 12°C/h, no significant differences in the germination and outgrowth of spores were observed (P > 0.05). However, when pork was heated at 4°C/h, growth of C. perfringens occurred when the temperature of the product was between 44 and 56°C. In another set of experiments, the behavior of C. perfringens spores under temperature abuse conditions was studied in cured and noncured ground pork heated at 4°C/h and then cooled from 54.4 to 7.2°C within 20 h. Temperature abuse during cooling of noncured ground pork resulted in a 2.8-log CFU/g increase in C. perfringens. In cured ground pork, C. perfringens decreased by 1.1 log CFU/g during cooling from 54.4 to 36.3°C and then increased by 0.9 log CFU/g until the product reached 7.2°C. Even when the initial level of C. perfringens spores in cured ground pork was 5 log CFU/g, the final counts after abusive cooling did not exceed 3.4 log CFU/g. These results suggest that there is no risk associated with C. perfringens in cured pork products under the tested conditions. 相似文献
3.
Inhibition of Clostridium perfringens spore germination and outgrowth during abusive chilling regimes was investigated by the incorporation of lactates of calcium (CaL), potassium (KL) and sodium (NaL) in injected pork. Lactates (Ca, K, or Na) were incorporated into injected pork samples at four different concentrations (1.0%, 2.0%, 3.0%, and 4.8%), along with a no-lactate control. A three-strain cocktail of C. perfringens spores was inoculated into the product (injected pork) to obtain a final spore population of ca. 2.0-2.5 log(10)CFU/g. Chilling of injected pork (control) from 54.4 to 7.2 degrees C within 6.5, 9, 12, 15, 18, and 21 h exponential chill rates resulted in C. perfringens population increases of 0.49, 2.40, 4.02, 5.03, 6.24, and 6.30 log(10)CFU/g, respectively. Addition of CaL at 1.0% or KL and NaL > or = 2.0% to injected pork was able to control C. perfringens germination and outgrowth to <1 logCFU/g, meeting the USDA-FSIS performance standard. However, extension of chilling rates beyond 9.0 h (up to 21 h) required addition of CaL ( > or = 2.0%), KL or NaL ( > or = 3.0%) to meet the stabilization performance standard. In general, CaL was more effective compared to KL or NaL for all the chilling regimes, in reducing the potential risk of C. perfringens germination and outgrowth. 相似文献
4.
Thippareddi H Juneja VK Phebus RK Marsden JL Kastner CL 《Journal of food protection》2003,66(3):376-381
Inhibition of the germination and outgrowth of Clostridium perfringens by buffered sodium citrate (Ional) and buffered sodium citrate supplemented with sodium diacetate (Ional Plus) during the abusive chilling of roast beef and injected pork was evaluated. Beef top rounds or pork loins were injected with a brine containing NaCl, potato starch, and potassium tetrapyrophosphate to yield final in-product concentrations of 0.85, 0.25, and 0.20%, respectively. Products were ground and mixed with Ional or Ional Plus at 0, 0.5, 1.0, and 2.0%. Each product was mixed with a three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.5 log10 spores per g. Chilling of roast beef from 54.4 to 7.2 degrees C resulted in C. perfringens population increases of 1.51 and 5.27 log10 CFU/g for 18- and 21-h exponential chill rates, respectively, while chilling of injected pork resulted in increases of 3.70 and 4.41 log10 CFU/g. The incorporation of Ional into the roast beef formulation resulted in C. perfringens population reductions of 0.98, 1.87, and 2.47 log10 CFU/g with 0.5, 1.0, and 2.0% Ional, respectively, over 18 h of chilling, while > or = 1.0% Ional Plus was required to achieve similar reductions (reductions of 0.91 and 2.07 log10 CFU/g were obtained with 1.0 and 2.0% Ional Plus, respectively). An Ional or Ional Plus concentration of > or = 1.0% was required to reduce C. perfringens populations in roast beef or injected pork chilled from 54.4 to 7.2 degrees C in 21 h. Cooling times for roast beef or injected pork products after heat processing can be extended to 21 h through the incorporation of > or = 1.0% Ional or Ional Plus into the formulation to reduce the potential risk of C. perfringens germination and outgrowth. 相似文献
5.
Inhibition of Clostridium perfringens by plant-derived carvacrol, cinnamaldehyde, thymol, and oregano oil was evaluated during abusive chilling of cooked ground turkey. Test substances were mixed into thawed turkey product at concentrations of 0.1, 0.5, 1.0, or 2.0% (wt/wt) along with a heat-activated three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.2 to 2.8 log CFU spores per g of turkey meat. Aliquots (5 g) of the ground turkey mixtures were vacuum packaged and then cooked in a water bath, where the temperature was raised to 60 degrees C in I h. The products were cooled from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h, resulting in 2.9-, 5.5-, 4.9-, and 4.2-log CFU/g increases, respectively, in C. perfringens populations in samples without antimicrobials. Incorporation of test compounds (0.1 to 0.5%) into the turkey completely inhibited C. perfringens spore germination and outgrowth (P < or = 0.05) during exponential cooling in 12 h. Longer chilling times (15, 18, and 21 h) required greater concentrations (0.5 to 2.0%) to inhibit spore germination and outgrowth. Cinnamaldehyde was significantly (P < 0.05) more effective (<1.0-log CFU/g growth) than the other compounds at a lower concentration (0.5%) at the most abusive chilling rate evaluated (21 h). These findings establish the value of the plant-derived antimicrobials for inhibiting C. perfringens in commercial ground turkey products. 相似文献
6.
Zaika LL 《Journal of food protection》2003,66(9):1599-1603
The effect of NaCl concentration and cooling rate on the ability of Clostridium perfringens to grow from spore inocula was studied with the use of a process that simulates the industrial cooking and cooling of smoked boneless ham and beef roasts. NaCl was added to ground cooked hams A and B (which were commercially obtained) to obtain levels of 2.4, 3.1, 3.6, and 4.1% (wt/wt) and 2.8, 3.3, 3.8, and 4.3% (wt/wt), respectively, and to raw ground beef to obtain levels of 0, 1, 2, 3, and 4% (wt/wt). Ham C, a specially formulated, commercially prepared product, was supplemented with NaCl to obtain levels of 2.0, 2.5, 3.0, and 3.5%. The samples were inoculated with a three-strain mixture of C. perfringens spores to obtain concentrations of ca. 3 log10 CFU/g. Portions of meat (5 g each) were spread into thin layers (1 to 2 mm) in plastic bags, vacuum packaged, and stored at -40 degrees C. Thawed samples were heated at 75 degrees C for 20 min and subsequently cooled in a programmed water bath from 54.4 to < or = 8.5 degrees C in 15, 18, or 21 h. For the enumeration of C. perfringens, samples were plated on tryptose-sulfite-cycloserine agar and incubated in an anaerobic chamber at 37 degrees C for 48 h. Population densities for cooked ham and beef increased as cooling time increased, and NaCl exerted a strong inhibitory effect on the germination and outgrowth of C. perfringens. For beef, while 3% NaCl completely arrested growth, pathogen numbers increased by > or = 3, 5, and 5 log10 CFU/g in 15, 18, and 21 h, respectively, when the NaCl level was <2%. C. perfringens did not grow during cooling for 15, 18, or 21 h in ham samples containing > or = 3.1% NaCl. Results obtained in this study suggest that a 15-h cooling time for cooked ham, which is normally formulated to contain >2% NaCl, would yield an acceptable product (with an increase of <1 log10 CFU/g in the C. perfringens count); however, for beef containing <2% NaCl, C. perfringens populations may reach levels high enough to cause illness. 相似文献
7.
The effect of combining vacuum cooling with an ozone-based inhibition process (InhVac) on Clostridium perfringens spore germination and outgrowth in cooked pork meat after exponential chilling (from 54.4 to 7.2 °C in 12, 15, 18, or 21 h) and isothermal storage (20, 25, 30, 36, or 45 °C) was evaluated. Ice cooling (IC) and vacuum cooling (VC) were used to compare the effects with InhVac. The samples were inoculated with a three-strain mixture of C. perfringens spores to obtain concentration of ca. 3 log10 CFU/g. C. perfringens growth in samples treated by InhVac were 0.1, 0.37 and 0.9 log10 CFU/g after 15, 18 and 21 h of cooling from 54.4 to 7.2 °C respectively, significantly lower (P<0.05) than those in samples subjected to IC (1.01, 2.10 and 2.8 log10 CFU/g) and VC (0.56, 1.01 and 2.13 log10 CFU/g). Compared to VC and IC, InhVac treatment increased the lag phase (λ), decreased the growth rates (μmax), and extended the sample shelf-life (the time until a 1 log10 CFU/g increase in C. perfringes from the initial concentration value) at all storage temperatures. InhVac-treated samples not only had a longer shelf-life than those treated by VC, but also exhibited almost two times longer shelf-life compared to those subjected to IC regardless of storage temperatures. Additionally, statistical indexes showed that a primary modified Gompertz model and a secondary Square Root model could fit the data well.Industrial relevanceIn this study, an innovative inhibition approach (InhVac) was found to show a better antimicrobial effect on C. perfringens germination and outgrowth in cooked pork meat compared to ice cooling and vacuum cooling under temperature-abuse conditions. A primary modified Gompertz model and a secondary Square Root model could be used to predict the C. perfringens growth in samples subjected to InhVac treatment. 相似文献
8.
Inhibition of Clostridium perfringens germination and outgrowth by salts of organic acids such as sodium lactate, sodium acetate, buffered sodium citrate and buffered sodium citrate supplemented with sodium diacetate was evaluated during continuous chilling of ground turkey. Turkey breast meat was injected with a brine-containing NaCl, potato starch and potassium tetra pyrophosphate to yield final in-product concentrations of 0.85%, 0.25% and 0.20%, respectively. The meat was ground, mixed with either sodium lactate (1%, 2%, 3% or 4%), sodium acetate (1% or 2%), buffered sodium citrate (Ional, 1%) or buffered sodium citrate supplemented with sodium diacetate (Ional Plus trade mark, 1%), in addition to a control that did not contain added antimicrobials. Each product was mixed with a three-strain C. perfringens spore cocktail to obtain final spore concentrations of ca. 2.8 log10 spores/g. Inoculated products (10 g) were packaged into cook-in-bags (2 x 3 in.), vacuum sealed, cooked at 60 degrees C for 1 h, and subsequently chilled from 54.4 to 7.2 degrees C in 15, 18 and 21 h following exponential chilling rates. Products were sampled immediately after cooking and then after chilling. Chilling of cooked turkey following 15, 18 and 21 h chill rates resulted in germination and outgrowth of C. perfringens spores to 6.6, 7.58 and 7.95 log10 CFU/g populations, respectively, from initial spore populations of ca. 2.80 log10 CFU/g. Incorporation of sodium lactate (1%), sodium acetate (1%), Ional or Ional Plus (1%) substantially inhibited germination and outgrowth of C. perfringens spores compared to controls. Final C. perfringens total populations of 3.12, 3.10, 2.38 and 2.92 log10 CFU/g, respectively, were observed following a 15-h exponential chill rate. Similar inhibitory effects were observed for 18 and 21 chill rates with the antimicrobials at 1% concentrations. While sodium lactate and sodium acetate concentrations of 1% were sufficient to control C. perfringens germination and outgrowth (<1.0 log10 CFU/g growth) following 15 h chill rates, higher concentrations were required for 18 and 21 h chill rates. Ional at 1% concentration was effective in inhibiting germination and outgrowth to <1.0 log10 CFU/g of C. perfringens for all three chill rates (15, 18 and 21 h) tested. Use of sodium salts of organic acids in formulation of ready-to-eat meat products can reduce the risk of C. perfringens spore germination and outgrowth during chilling. 相似文献
9.
目的 研究产气荚膜梭菌(Clostridium perfringens,C.perfringens)芽孢的萌发特性。方法 本研究以C.perfringens芽孢为研究对象,研究L-丙氨酸、L-谷氨酰胺、L-赖氨酸、L-天冬酰胺(L-asparagine)、氯化钾(KCl)、钙离子与2,6-吡啶二羧酸(pyridine-2,6-dicarboxylic acid,DPA)的螯合物(a chelate of Ca2+with DPA,Ca2+-DPA)、十二烷胺、L-asparagine和KCl的混合物(a mixture of L-asparagine and KCl,AK)、L-asparagine、D-葡萄糖、D-果糖和KCl的混合物(a mixture of L-asparagine,D-glucose,D-fructose and KCl,AGFK)、脑心浸液肉汤(brain heart infusion broth,BHI) 10种萌发剂对芽孢萌发的影响,选取处理后芽孢DPA释放量、热抗损失、芽孢溶液吸光度(optical density at 600 n... 相似文献
10.
The minimum inhibitory concentrations (MICs) of several naphthoquinones (NQ) were determined in the presence or absence of nitrite (NO2?) against various strains of Clostridium perfringens. In fluid thioglycollate medium, MICs ranged from 70–100 ppm for 2-methyl-1,4-NQ (menadione), 200–280 ppm for 1,4-NQ, 180–250 ppm for 1,2-NQ, >500 ppm for several water-soluble derivatives and 100–300 ppm for NO2?. Using a type B strain in homogenized meat medium, MICs were 670 ppm for menadione, 620 ppm for 1,4-NQ and 770 ppm for NO2?. Nitrite, menadione and 1,4-NQ exhibited comparable and additive rather than synergistic inhibition. Some NQ compounds may have potential as partial nitrite substitutes subject to safety evaluation. 相似文献
11.
Danler RJ Boyle EA Kastner CL Thippareddi H Fung DY Phebus RK 《Journal of food protection》2003,66(3):501-503
Cooked, chilled beef and cooked, chilled pork were inoculated with three strains of Clostridium perfringens (NCTC 8238 [Hobbs serotype 2], NCTC 8239 [Hobbs serotype 3], and NCTC 10240). Inoculated products were heated to 75 degrees C, held for 10 min in a circulating water bath to heat activate the spores, and then chilled by circulating chilled brine through the water bath. Samples were chilled from 54.4 to 26.6 degrees C in 2 h and from 26.6 to 4.4 degrees C in 5 h. Differences in initial C. perfringens log counts and log counts after chilling were determined and compared with the U.S. Department of Agriculture (USDA) stabilization guidelines requiring that the chilling process allow no more than 1 log total growth of C. perfringens in the finished product. This chilling method resulted in average C. perfringens increases of 0.52 and 0.68 log units in cooked beef and cooked pork, respectively. These log increases were well within the maximum 1-log increase permitted by the USDA, thus meeting the USDA compliance guidelines for the cooling of heat-treated meat and poultry products. 相似文献
12.
We investigated the inhibition of Clostridium perfringens spore germination and outgrowth by two green tea extracts with low (green tea leaf powder [GTL]; 141 mg of total catechins per g of green tea extract) and high (green tea leaf extract [GTE]; 697 mg of total catechins per g of extract) catechin levels during abusive chilling of retail cooked ground beef, chicken, and pork. Green tea extracts were mixed into the thawed beef, chicken, and pork at concentrations of 0.5, 1.0, and 2.0% (wt/ wt), along with a heat-activated (75 degrees C for 20 min) three-strain spore cocktail to obtain a final concentration of approximately 3 log spores per g. Samples (5 g) of the ground beef, chicken, and pork were then vacuum packaged and cooked to 71 degrees C for 1 h in a temperature-controlled water bath. Thereafter, the products were cooled from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h, resulting in significant increases (P < 0.05) in the germination and outgrowth of C. perfringens populations in the ground beef, chicken, and pork control samples without GTL or GTE. Supplementation with 0.5 to 2% levels of GTL did not inhibit C. perfringens growth from spores. In contrast, the addition of 0.5 to 2% levels of GTE to beef, chicken, and pork resulted in a concentration-and time-dependent inhibition of C. perfringens growth from spores. At a 2% level of GTE, a significant (P < 0.05) inhibition of growth occurred at all chill rates for cooked ground beef, chicken, and pork. These results suggest that widely consumed catechins from green tea can reduce the potential risk of C. perfringens spore germination and outgrowth during abusive cooling from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h of cooling for ground beef, chicken, and pork. 相似文献
13.
Many meat-based food products are cooked to temperatures sufficient to inactivate vegetative cells of Clostridium perfringens, but spores of this bacterium can survive, germinate, and grow in these products if sufficient time, temperature, and other variables exist. Because ingestion of large numbers of vegetative cells can lead to concomitant sporulation, enterotoxin release in the gastrointestinal tract, and diarrhea-like illness, a necessary food safety objective is to ensure that not more than acceptable levels of C. perfringens are in finished products. As cooked meat items cool they will pass through the growth temperature range of C. perfringens (50 to 15 degrees C). Therefore, an important step in determining the likely level of C. perfringens in the final product is the estimation of growth of the pathogen during cooling of the cooked product. Numerous studies exist dealing with just such estimations, yet consensual methodologies, results, and conclusions are lacking. There is a need to consider the bulk of C. perfringens work relating to cooling of cooked meat-based products and attempt to move toward a better understanding of the true growth potential of the organism. This review attempts to summarize observations made by researchers and highlight variations in experimental approach as possible explanations for different outcomes. An attempt is also made here to identify and justify optimal procedures for conducting C. perfringens growth estimation in meat-based cooked food products during cooling. 相似文献
14.
Inhibition of Clostridium tyrobutyricum by bacteriocin-like substances produced by lactic acid bacteria 总被引:2,自引:0,他引:2
Lactic acid bacteria were selected for their inhibitory activity against Clostridium tyrobutyricum under conditions that eliminate the effects of lactic acid and hydrogen peroxide. Four strains were isolated belonging to the species Lactococcus lactis ssp. lactis. The sensitivity of the inhibitory substances to pronase and trypsine indicates that they are proteins or peptides different from nisin. Their resistance to phospholipase D indicates that they are also different from lactostrepcin. The inhibitory substances are produced during the exponential phase of growth. Their activity is bactericidal and directed toward some strains of Clostridium tyrobutyricum, Lactobacillus helveticus, and Streptococcus thermophilus, but strains used as dairy starters, Lactobacillus lactis, Streptococcus thermophilus, and Propionibacterium shermanii, are not all affected by the inhibition. 相似文献
15.
Proper temperature control is essential in minimizing Clostridium perfringens germination, growth, and toxin production. The U.S. Department of Agriculture Food Safety and Inspection Service offers two options for the cooling of meat products: follow a standard time-temperature schedule or validate that alternative cooling regimes result in no more than a 1-log CFU/g increase of C. perfringens and no growth of Clostridium botulinum. The Juneja 1999 model for C. perfringens growth during cooling may be helpful in determining whether the C. perfringens performance standard has been achieved, but this model has not been extensively validated. The objective of this study was to validate the Juneja 1999 model under a variety of temperature situations. The Juneja 1999 model for C. perfringens growth during cooling is fail safe when low (<1 log CFU/ml) or high (>3 log CFU/ml) observed increases occur during exponential cooling. The Juneja 1999 model consistently underpredicted growth at intermediate observed increases (1 to 3 log CFU/ml). The Juneja 1999 model also underpredicted growth whenever exponential cooling took place at two different rates in the first and second portions of the cooling process. This error may be due to faster than predicted growth of C. perfringens cells during cooling or to an inaccuracy in the Juneja 1999 model. 相似文献
16.
17.
Clostridium perfringens spore destruction, aerobic plate counts (APCs), and counts of Enterobacteriaceae, coliforms, and Escherichia coli during baking of sambusa (a traditional Tajik food) were evaluated. Control of germination and outgrowth of C. perfringens spores in sambusa during cooling at room or refrigerated temperatures was evaluated using organic acid salts (buffered sodium citrate [Ional] and 1 and 2% potassium lactate, wt/wt). Sambusa were prepared with 40 g of either inoculated or noninoculated meat and baked for 45 min at 180 degrees C. For evaluation of destruction of C. perfringens spores during heating and germination and outgrowth of spores during cooling, ground beef was inoculated and mixed with a three-strain cocktail of C. perfringens spores. Aerobic bacteria, Enterobacteriaceae, coliforms, and E. coli were enumerated in noninoculated sambusa before and after baking and after cooling at room or refrigeration temperatures. After baking, APCs and Enterobacteriaceae and coliform counts were reduced by 4.32, 2.55, and 1.96 log CFU/g, respectively. E. coli counts were below detectable levels in ground beef and sambusa samples. Enterobacteriaceae, coliform, and E. coli counts were below detectable levels (< 0.04 log CFU/g) in sambusa after cooling by both methods. Total C. perfringens populations increased (4.67 log CFU/g) during cooling at room temperature, but minimal increases (0.31 log CFU/g) were observed during cooling under refrigeration. Incorporation of 2% (wt/wt) buffered sodium citrate controlled C. perfringens spore germination and outgrowth (0.25 log CFU/g), whereas incorporation of up to 2% (wt/wt) potassium lactate did not prevent C. perfringens spore germination and outgrowth. Incorporation of organic acid salts at appropriate concentrations can prevent germination and outgrowth of C. perfringens in improperly cooled sambusa. 相似文献
18.
《Food microbiology》2002,19(4):313-327
Estimates of the growth kinetics of Clostridium perfringens from spores at temperatures applicable to the cooling of cooked cured chicken products are presented. A model for predicting relative growth of C. perfringens from spores during cooling of cured chicken is derived using a nonlinear mixed effects analysis of the data. This statistical procedure has not been used in the predictive microbiology literature that has been written for microbiologists. However, recently software systems have been including this statistical procedure. The primary growth curves, based on the stages of cell development, identify two parameters: (1) germination, outgrowth, and lag (GOL) time, or lag phase time; and (2) exponential growth rate, egr. The mixed effects model does not consider GOL and egr as constants, but as random variables that would, in all likelihood, differ for different cooling events with the same temperature. As such, it is estimated that the egr, for a given temperature, has a CV of approximately 19%. The model obtained by the mixed effects model is compared to the one obtained by the more traditional two-stage approach. The estimated parameters from the derived models are virtually the same. The model predicts, for example, a geometric mean relative growth of about 9·4 with an upper 95% confidence limit of 21·3 when cooling the product from 51°C to 12°C in 8 h, assuming log linear decline in temperature with time. C. perfringens growth from spores was not observed at a temperature of 12°C for up to 3 weeks. 相似文献
19.
Vijay K. Juneja Harry Marks Harshavardhan H. Thippareddi 《Innovative Food Science and Emerging Technologies》2010,11(1):146-154
A predictive dynamic model for Clostridium perfringens spore germination and outgrowth in cooked pork products during cooling is presented. Cooked, ground pork was inoculated with C. perfringens spores and vacuum packaged. For the isothermal experiments, all samples were incubated in a water bath stabilized at selected temperatures between 10 and 51 °C and sampled periodically. For dynamic experiments, the samples were cooled from 54.4 to 27 °C and subsequently from 27 to 4 °C for different time periods, designated as x and y hours, respectively. The growth models used were based on a model developed by Baranyi and Roberts (1994), which incorporates a constant, referred to as the physiological state constant, q0. The value of this constant captures the cells' history before the cooling begins. To estimate specific growth rates, data from isothermal experiments were used, from which a secondary model was developed, based on a particular form of Ratkowsky's 4-parameter equation. Using the data from dynamic experiments and the Ratkowsky model, an optimal value of q0 (=0.01375) was derived minimizing the mean square error of predictions. However, using this estimate, the model had a tendency to over-predict relative growth when there was observed small amounts of relative growth, and under-predict relative growth when there was observed large relative growth. To provide more fail-safe estimates, rather than using the derived value of q0, a value of 0.04 is recommended. The predictive model with this value of q0 would provide more fail-safe estimates of relative growth and could aid producers and regulatory agencies with determining disposition of products that were subjected to cooling deviations.Industrial relevanceSafe time/temperature for cooling of cooked pork is very important to guard against the pathogen in cooked products. Predictive model will assist industry to determine compliance with regulatory performance standards and to ensure microbiological safety of cooked products. 相似文献
20.
Vijay K. Juneja Harry Marks Harshavardhan Thippareddi 《Innovative Food Science and Emerging Technologies》2009,10(2):260-266
Traditional methodologies for development of microbial growth models under dynamic temperature conditions do not take into account the organism's history. Such models have been shown to be inadequate in predicting growth of the organisms under dynamic conditions commonly encountered in the food industry. The objective of the current research was to develop a predictive model for Clostridium perfringens spore germination and outgrowth in cooked chicken products during cooling by incorporating a function to describe the prior history of the microbial cell in the secondary model. Incorporating an assumption that growth kinetics depends in an explicit way on the cells' history could provide accurate estimates of growth or inactivation.Cooked, ground uncured chicken was inoculated with C. perfringens spores, and from this chicken, samples were formed and vacuum packaged. For the isothermal experiments, all samples were incubated in a constant temperature water baths stabilized at selected temperatures between 10 and 51 °C and sampled periodically. The samples were cooled from 54.4 to 27 °C and subsequently from 27 to 4 °C at different time periods (cooling rates) for dynamic cooling experiments. The standard model provided predictions that varied from the observed mean log10 growth values by magnitudes up to about 0.65 log10. However, for a selected memory model, estimates of log10 relative growth provided predictions within 0.3 log10 of the mean observed log10 growth values. These findings point to an improvement of predictions obtained by memory models over those obtained by the standard model. More study though is needed to validate the selected model.Industrial relevanceMention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. 相似文献