首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photoelectrodes of mixed microsized TiO2 aggregates and individually dispersed TiO2 nanocrystallites with different ratios were fabricated and studied for improved power conversion efficiency in dye-sensitized solar cells (DSCs). TiO2 aggregates/nanocrystallites composites possess several advantages for high performance of DSCs, including the light scattering by the microsized TiO2 aggregates and the high surface area of nanocrystallites both in aggregates and individually dispersed. A high power conversion efficiency of 7.59% was achieved with mixed TiO2 aggregates/nanocrystallites photoelectrode using conventional dye N3, without applying anti-reflection coating, back-scattering layer, or chemical treatment. The electron transport properties of DSCs with mixed photoelectrodes were investigated by electrochemical impedance spectra, and the results showed that such a photoelectrode with mixed aggregates and nanocrystallites possess better connectivity for efficient electron transport.  相似文献   

2.
Three different types of nanocrystalline, N-doped TiO2 electrodes were synthesized using several nitrogen dopants through wet methods. The obtained nanocrystalline, N-doped TiO2 electrodes possessed different crystallite sizes, surface areas, and N-doping amounts. Characterizations were performed to reveal the nitrogen-doping processes for the wet methods using ammonia, urea, and triethylamine as the nitrogen dopants. Additionally, a high conversion efficiency of 8.32% was achieved by the dye-sensitized solar cells, based on the N-doped TiO2 electrodes. For instance, in comparison with the commercial P25 (5.76%) and pure anatase TiO2 electrodes (7.14%), significant improvements (44% and 17%, respectively) in the efficiencies were obtained. The findings also indicated that the ammonia nitrogen dopant was more efficient than other two nitrogen dopants. The electron transports, electron lifetimes, and charge recombination in the dye-sensitized N-doped TiO2 solar cells also differed from those in the pure TiO2-based dye-sensitized solar cells (DSCs). Specifically, an enhanced photocurrent of ca. 36% in N-doped DSCs resulted from the synergistic effects of the high dye uptake and the efficient electron transport. Moreover, the relationship between charge and voltage revealed that less charge was needed to get a high open-circuit voltage in the N-doping films.  相似文献   

3.
Recent advance in flexible electronics demands development of flexible energy sources. Of particular interests are flexible dye-sensitized solar cells (DSCs). However, a brittle nature of TiO2 materials is one of hurdles to realize flexible DSCs. Here we synthesized flexible photoanodes of TiO2 particles and single-walled carbon nanotubes (SWNTs). Metallic SWNTs provided a greater photovoltaic conversion efficiency than semiconducting SWNTs due to the more efficient electron transport. The metallic SWNTs also constructed effective mechanical network among TiO2 particles providing flexibility and durability. The photoanode was transferred on an indium tin oxide (ITO)-coated polyethylene terephthalate film and characterized for front-illuminated DSCs under the AM 1.5 simulated sunlight. There was only a small decrease in photovoltaic conversion efficiency with bending which was primarily caused by cracking of the ITO layer. Due to this limitation, the TiO2–metallic SWNT photoanode was transferred on a Ti foil and went through up to 1000 bending cycles. The cycled photoanode was assembled for back-illuminated DSCs due to the non-transparent Ti foil. There was no decrease in photovoltaic conversion efficiency even after 1000 bending cycles demonstrating excellent flexibility and durability.  相似文献   

4.
A low temperature (<150 °C) fabrication method for preparation of TiO2 porous films with high efficiency in dye-sensitized solar cells (DSSCs) has been developed. The Ti(IV) tetraisopropoxide (TTIP) was added to the paste of TiO2 nanoparticles to interconnect the TiO2 particles. The electrochemical impedance spectroscopy (EIS) technique was employed to quantify the charge transport resistance at the TiO2/dye/electrolyte interface (Rct2) and electron lifetime in the TiO2 film (τe) under different molar ratios of TTIP/TiO2 and also at various TiO2 thicknesses. It was found that the Rct2 decreased as the molar ratio increased from 0.02 to 0.08, however, it increased at a molar ratio of 0.2 due to the reduction in surface area for dye adsorption. In addition, the characteristic frequency peak shifted to lower frequency at a molar ratio of 0.08, indicating the longer electron lifetime. As for the thickness effect, TiO2 film with a thickness around 17 μm achieved the best cell efficiency. EIS study also confirmed that, under illumination, the smallest Rct2 was associated with a TiO2 thickness of 17 μm, with the Rct2 increased as the thickness of TiO2 film increased. In the Bode plots, the characteristic frequency peaks shifted to higher frequency when the thickness of TiO2 increased from 17.2 to 48.2 μm, indicating the electron recombination increases as the thickness of the TiO2 electrode increases.Finally, to make better use of longer wavelength light, 30 wt% of larger TiO2 particle (300 nm) was mixed with P25 TiO2 as light scattering particles. It effectively increased the short-circuit current density and cell conversion efficiency from 7.44 to 8.80 mA cm−2 and 3.75 to 4.20%, respectively.  相似文献   

5.
Herein, enhancement of dye‐sensitized solar cell (DSC) performance is reported by combining the merits of the dye loading of TiO2 nanoparticles and light scattering, straight carrier transport path, and efficient electron collection efficiency of TiO2 cubes. We fabricate DSC devices with various arrangement styles and compositions of the electrodes in the forms of monolayer and double layer films. For this purpose, the solvothermal synthesized TiO2 cubic particles (100‐600 nm) are employed as the scattering layer, whereas TiO2 nanoparticles (15‐30 nm) synthesized via a combination of solvothermal and sol‐gel routes are used as the active layer of devices. We improve the photovoltaic characteristics of DSCs by two mechanisms. First, the light harvesting of DSC devices made of nanoparticles is improved by controlling the thickness of monolayer films, reaching the highest efficiency of 7.0%. Second, the light scattering and electron collection efficiency are enhanced by controlling the composition of double layer films composed of mixtures of TiO2 nanoparticles and cubes, obtaining the maximum efficiency of 8.21%. The enhancements are attributed to balance between charge transfer resistance and charge recombination of photo‐generated electrons as well as dye loading and light scattering.  相似文献   

6.
In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV–vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized.  相似文献   

7.
TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.  相似文献   

8.
4-N,N-Dimethylaminopyridine (DMAP) was introduced into poly(ethyleneoxide)/oligo(ethylene glycol) (PEO/PEG) electrolytes for dye-sensitized solar cells (DSCs). The improved photovoltaic performance of DMAP-doped DSCs was attributed to the integrated effects of the upward displacement of the TiO2 band edge and the decrease in the electron recombination rate. Remarkably, the presence of DMAP suppresses electron recombination via two combined pathways involving the dissociation of triiodide to iodide by a complexation reaction and a modification of the surface state distribution in the band gap of TiO2. With the addition of DMAP, the open-circuit voltage enhances dramatically. The short-circuit photocurrent density has a small increase at low DMAP concentration and drops afterwards. The power conversion efficiency is 4.07%, which corresponds to a 63% increase over that of the DSC without DMAP.  相似文献   

9.
The effect of iodine concentration in the electrolyte with non-volatile solvent of dye-sensitized solar cells (DSCs) on photovoltaic performance was studied. The electron transport and interfacial recombination kinetics were also systematically investigated by electron impedance spectroscopy (EIS). With the iodine concentration increased from 0.025 to 0.1 M, open-circuit voltage (Voc) and photocurrent density (Jsc) decreased while fill factor (ff) increased significantly. The decline of the Voc and Jsc was mainly ascribed to increased electron recombination with tri-iodide ions (I3). The increased fill factor was primarily brought by a decrease in the total resistance. From impedance spectra of the solar cells, it can be concluded that increasing the iodine concentration in electrolytes could decrease charge transfer resistance (Rct) and the chemical capacitance (Cμ), increase the electron transport resistance (Rt), and hence decrease the electron lifetime (τ) and the effective diffusion coefficient (Dn) of electrons in the TiO2 semiconductor. With optimum iodine concentration, device showed a photocurrent density of 16.19 mA cm−2, an open-circuit voltage of 0.765 V, a fill factor of 0.66, and an overall photo-energy conversion efficiency of 8.15% at standard AM 1.5 simulated sunlight (100 mW cm−2).  相似文献   

10.
Quasi solid state dye-sensitized solar cells (DSSCs) have been fabricated with organic sol or TiCl4 modified TiO2 and porous TiO2 photoanode and a triphenylamine-based dye (TPAR3) used as photosensitizer. Dark current measurements suggested that both modified TiO2 photoelectrodes had significantly reduced the recombination rate of photoelectrons due to the reduced bare FTO surface in comparison to porous photoelectrode. The DSSC based on modified TiO2 photoelectrodes showed improved photovoltaic parameters compared to the porous TiO2 photoelectrode. The overall power conversion efficiency (PCE) is 3.27%, 4.73% and 6.8% for porous, TiCl4 modified and sol modified TiO2 photoelectrodes, respectively. The improved PCE with modified TiO2 electrodes was attributed to the formation of a compact layer. This effectively improves adherence of TiO2 to FTO surface, providing a larger TiO2/FTO contact area and reducing the electron recombination by blocking the direct contact between redox electrolyte and the conductive FTO surface and enhances the electron collection efficiency.  相似文献   

11.
Electrophoretic deposition (EPD) method is employed to obtain mesoporous TiO2 film on a titanium (Ti) foil; the film is then mechanically compressed and sintered at 350 °C before being subjected to dyeing. A comprehensive study was made on the mechanistic aspects of the EPD process. The dye-sensitized solar cell (DSSC) using the thus formed TiO2 film rendered a power conversion efficiency (Eff.) of 6.5%. Effects of various compression pressures on the photovoltaic parameters and on other characteristic parameters of the pertinent DSSCs are studied. Electrochemical impedance spectroscopy (EIS) is applied for the first time, using a novel equivalent model, to study the impedance behavior of the DSSC with this type of TiO2 film. We also obtain characteristic parameters of the TiO2 photoanode by using EIS. The coordination number of the TiO2 film, and the ratio of charge transfer resistances of electron recombination and electron transport are also obtained and analyzed. Moreover, we employ a multilayer approach and increase the film thickness to prepare TiO2 films with the same coordination number and porosity; DSSCs using such TiO2 films obtained from P90 and P25 rendered efficiencies of 6.5% and 5.24%, respectively. Scanning electron microscopy (SEM) micrographs are obtained to characterize the TiO2 films formed by the EPD technique and laser-induced transient technique is used to estimate the electron lifetime in the TiO2 films.  相似文献   

12.
For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced.  相似文献   

13.
Nanocrystalline TiO2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 °C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO2, which plays an important role in improving the interconnection between TiO2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO2 films. The cell performance was further optimized by designing nanocrystalline TiO2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm−2 (AM 1.5) simulated sunlight.  相似文献   

14.
Herein, an improved structure of the dye‐sensitized solar cell (DSSC) is demonstrated which is composed of surface modified fluorine‐doped tin oxide (FTO) glass with graphene (GR) sheets and TiO2 films incorporated with three‐dimensional crumped graphene (3‐D CGR)/GR sheets. The morphologies of the as‐prepared GR sheets on FTO glasses and 3‐D CGR/GR sheets/TiO2 films were observed by field‐emission scanning electron microscopy. Light harvesting and charge recombination kinetics were investigated with a solar simulator and electrochemical impedance spectroscopy analysis. In addition to the reduced charge resistance by the GR modified FTO, the enhanced dye loading capability of the 3‐D CGR, and the rapid charge transport by the 2‐D GR sheets, the power conversion efficiency was 7.2%, which was an increase of 56% compared to a “conventional” structured DSSC. © 2015 American Institute of Chemical Engineers AIChE J, 62: 574–579, 2016  相似文献   

15.
High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6?wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3?mA?cm?2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies.  相似文献   

16.
The purpose of this article is to investigate the effects of nano‐tianium dioxide (nano‐TiO2) on the high‐amylose starch/polyvingl alcohol (PVA) blend films prepared by a solution casting method. The results show that at the concentration of 0.6% of nano‐TiO2, the film demonstrated the best tensile strength at 9.53 MPa, and the elongation at break was noted as 49.50%. The optical transmittance of the film was decreased and the water resistance was improved with further increase of the concentration of nano‐TiO2. Using the techniques of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and field‐emission scanning electron microscopy (SEM), the molecular and the crystal structures of the films were characterized. The results indicate that the miscibility and compatibility between high‐amylose starch and PVA were increased with the addition of nano‐TiO2 into the films due to the formation of hydrogen and C? O? Ti bonds. The antimicrobial activities of the blend films were also explored. The results show that there were inhibitory zones around the circular film disc, which is attributable to the addition of nano‐TiO2. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42339.  相似文献   

17.
The photoelectrochemical properties of a high molar extinction coefficient charge transfer organic dye containing thienylfluorene segment called FL, and the effect of incorporating TiO2 nanotube (TiNT) in TiO2 nanoparticle film along with the above dye on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The influence of soaking time of the TiO2 electrode in dye solution and the effect of varying its concentration, on the solar cell efficiency was also studied. Cyclic voltammetric (CV) analysis revealed the linear relationship between the anodic peak current and the scan rate, indicating a surface-confined diffusion process.The surface morphology of TiNT was characterized using SEM, TEM and XRD. The open-circuit voltage (VOC) of the DSSC increased with the increase in the wt% of TiNT and shows optimal value at about 5 wt%, which is correlated with the suppression of the electron recombination as found out from the electron lifetime studies.The electrochemical impedance spectroscopy (EIS) technique was employed to quantify the charge transport resistance (Rct) and electron lifetime under different ratios of the TiNT/nanoparticle. The electron lifetimes of the DSSCs based on FL and N3 dye were very close to one another and the DSSC based on the FL showed respectable photovoltaic performance of ca. 7.8% under the light intensity of 100 mW cm−2 (AM 1.5G).  相似文献   

18.
Diphenylphosphinic acid (DPPA) was adopted as a novel coadsorbent in dye-sensitized solar cells (DSCs) based on nanocrystalline TiO2 sensitized with N719 dye [(Bu4N)2[Ru(dcbpyH)2(NCS)2]], leading to a significant enhancement of the cell's performance. Different ratios of dye-to-coadsorbent caused varying results, including a 12.5% increase in overall conversion efficiency coupled with a 10.6% increase in short-circuit current with a ratio of 2:1. Electrochemical impedance spectroscopy (EIS) results indicated that the augment ascribes to inhibited interfacial charge recombination between the conduction band electrons and triiodide ions in the electrolyte. On the other hand, different ratios caused different shift directions of the TiO2 conduction band, which was confirmed by charge transport resistance obtained also from EIS analysis. To be specific, when the ratio of N719-to-DPPA was 2:1 and 1:1, the conduction band of TiO2 film was positively shifted, while it was negatively shifted when the ratio was 4:1.  相似文献   

19.
Nanocolloidal polypyrrole (PPy):poly(styrene sulfonate) (PSS) particles were synthesized by chemical oxidative polymerization using 15 wt% of PSS. The highly processable polymer composite (PPy:PSS) was spin‐coated at 4000 rpm on fluorine‐doped tin oxide glass and subsequently employed as a counter electrode (CE) for dye‐sensitized solar cells (DSCs). PPy:PSS multilayer (one, three, five) CEs were treated with CuBr2 salt, which enhances the efficiency of the DSCs. Optical studies reveal that a bulkier counterion hinders interchain interactions of PPy which on salt treatment shows a moderate redshift in absorption maxima. Salt‐treated PPy:PSS films exhibit lower charge transfer resistance, higher surface roughness and better catalytic performance for the reduction of I3?, when compared with untreated films. The improved catalytic performance of salt‐treated PPy:PSS multilayer films is attributed to charge screening and conformational change of PPy, along with the removal of excess PSS. Under standard AM 1.5 sunlight illumination, salt treatment is shown to boost the efficiency of multilayer PPy:PSS composite film‐based DSCs, leading to enhanced power conversion efficiency of 6.18, 6.33 and 6.37% for one, three and five layers, respectively. These values are significantly higher (ca 50%) than those for corresponding devices without CuBr2 salt treatment (3.48, 2.90 and 2.01%, respectively). © 2016 Society of Chemical Industry  相似文献   

20.
A novel solid-state hierarchically structured ZnO dye-sensitized solar cell (DSC) was assembled by using TiO2 as filler in polyethylene oxide (PEO)/polyethylene glycol (PEG) electrolytes and ZnO nanocrystalline aggregates as photoanode film. Under optimized composite polyelectrolyte containing PEO/oligo-PEG/TiO2/LiI/I2 the photovoltaic performance of the solid-state ZnO DSCs was significantly better, with an overall conversion efficiency (η) of 1.8% under irradiation of 100 mW/cm2, which was higher than those of the cells with PEO/TiO2/LiI/I2 (η = 1.1%) or PEO/oligo-PEG/LiI/I2 electrolyte (η = 1.5%). Further, the hierarchically structured ZnO-based cell showed a higher η value of 2.0% under 60 mW/cm2 radiation. The morphologies, ionic conductivity of three different composite electrolytes and their performance to the DSCs were also studied by FESEM, IV data, IPCE and EIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号