首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用Ag-Cu/Ti叠层活性钎料实现了TiAl基合金与W-Cu合金的钎焊连接,获得了良好的钎焊接头。利用SEM,EDS等微观手段,分析了接头界面结构和元素分布情况,并探讨接头连接机理。研究结果表明:TiAl/AgCu/Ti/W-Cu典型界面微观结构为TiAl/Cu-Ti/Cu基固溶体+Ag基固溶体+Ag-Cu共晶/Cu-Ti+Cu基固溶体/WCu。TiAl侧的连接主要靠Cu-Ti反应层的生成,W-Cu侧主要为钎料中Ag向W-Cu中扩散形成的Cu基固溶体实现连接。  相似文献   

2.
钎焊金刚石膜的试验研究及机理分析   总被引:2,自引:0,他引:2  
针对金刚石膜钎焊问题,采用粉末冶金法制备的Ag72-Cu28-Ti(1-5)钎料片,对金刚石膜与硬质合金进行了真空钎焊试验。在真空度<5×1012-2Pa,850℃×10min工艺条件下,实现了金刚石膜与硬质合金的钎焊连接。用扫描电镜、电子探针及X射线衍射区研究了金刚石膜与活性钎料界面,揭示了钎焊界面的形成机理。在钎焊温度下,液态Ag-Cu-Ti钎料合金中的活性成分β-Ti与金刚石膜表面的C具有较强的亲和力,通过吸附、扩散和化学反应,在金刚石膜表面出现了类金属TiC层,在以Ag-Cu共晶合金为基的钎料作用下,实现了金刚石膜与支撑体硬质合金钎焊连接。金刚石膜钎焊接头的四点弯曲强度测试表明,在文中的钎焊工艺参数下,钎料中Ti含量1%-3%时,其钎焊接头平均强度>300MPa。  相似文献   

3.
采用Ag-Cu钎料与Ti-Zr-Ni-Cu钎料,对TiAl与Ti合金进行了真空钎焊试验,主要研究了采用两种钎料时的界面反应以及钎焊温度对界面组织及性能的影响.研究发现,采用Ag-Cu钎料时界面结构为:Ti/Ti(Cu,Al)2/TiCux Ag(s,s)/Ag(s,s)/Ti(Cu,Al)2/TiAl,当钎焊温度T=1 223 K,保温时间t=10 min时接头的剪切强度达到223.3 MPa;采用Ti-Zr-Ni-Cu钎料时在界面出现了Ti2Ni,Ti(Cu,Al)2等多种金属间化合物,当钎焊温度T=1 123 K,保温时间t=10 min时接头的剪切强度达到139.97 MPa.  相似文献   

4.
对空气中Ag-Cu合金钎料与Ce0.85Sm0.15O1.925-Sm0.6Sr0.4Al0.3Fe0.7O3(SDC-SSAF)双相陶瓷透氧膜的润湿性和界面反应进行了研究,利用扫描电子显微镜及能谱仪(SEM-EDS)表征分析了润湿试样的连接界面.结果表明:980℃下Ag-Cu合金钎料在SDC-SSAF双相透氧膜上的润...  相似文献   

5.
通过在Ag-26Cu-5Ti钎料中添加21. 5%In,设计开发了一种新型Ag Cu In Ti合金钎料,用于实现Al2O3陶瓷与无氧铜的活性连接,同时改善流动性,提高活性。对钎料的固液相温度与润湿铺展性能进行分析,并测试了Al_2O_3/Ag Cu In Ti/Cu试验件抗拉强度和气密性。通过金相显微镜、扫描电子显微镜观察试验件微观界面组织,进一步探究Ag Cu In Ti合金钎料的活性连接反应机理。结果表明,Ag Cu In Ti合金钎料在750℃实现了对陶瓷和金属的真空活性连,降低了钎焊温度,满足分级钎焊和补焊的需求,且形成结合紧密的反应界面,证明其对陶瓷具有良好的润湿性;钎焊过程中合金钎料中的Ti元素向Al_2O_3陶瓷界面富集,形成多个界面产物,而合金钎料中Ag元素、Cu元素、In元素与无氧铜发生溶解扩散,生成新的化合物相,最终实现陶瓷与金属的冶金结合。  相似文献   

6.
AgCuTi合金钎焊单层立方氮化硼砂轮   总被引:5,自引:1,他引:5       下载免费PDF全文
为研制我国新一代单层钎焊CBN(立方氮化硼 )磨料砂轮 ,尝试Ni-Cr和Ag -Cu-Ti两种活性钎料 ,在真空炉中钎焊。试验结果表明 ,Ni-Cr合金钎料对CBN磨料不浸润 ,钎焊后CBN磨料全部脱落 ;而Ag -Cu -Ti合金钎料对CBN则表现出良好的浸润性并将CBN牢牢钎焊住。借助扫描电镜、X射线能谱和X射线衍射对界面微区组织的分析研究表明 ,钎焊过程中Ag -Cu -Ti合金钎料中的Ti向CBN磨料界面富集 ,并与CBN磨料表面的N和B元素反应生成TiN和TiB ,这是实现Ag -Cu -Ti合金钎料与CBN磨料高结合强度的关键因素。断口形貌的分析研究表明 ,CBN与Ag -Cu -Ti合金钎料间的断口发生在Ag -Cu -Ti合金钎料层 ,说明CBN磨料与Ag -Cu -Ti合金钎料的结合强度已超过了Ag-Cu -Ti合金钎料本身强度。最后将研制出的单层钎焊CBN磨料砂轮与传统电镀CBN砂轮进行了重负荷磨削对比试验 ,钎焊砂轮表现出明显的优势  相似文献   

7.
对255℃时Sn-6.5Zn钎料/Cu基板界面反应及金属间化合物的形成与转化进行热力学计算与分析,并利用SEM、EDS、XRD研究分析255℃不同钎焊时间条件下钎料/Cu基板界面组织与IMC层形态特征。结果表明:Sn-6.5Zn钎料/Cu焊点界面紧靠Cu基板侧形成CuZn层;CuZn IMC有与钎料中的Zn原子继续反应生成Cu5Zn8 IMC的趋势;在相同钎焊温度条件下,不同钎焊时间对界面厚度影响不大;随钎焊时间延长,Sn-6.5Zn钎料/Cu基板焊点界面IMC层的平均厚度增大,界面粗糙度则由于不同钎焊时间IMC在液态钎料中生长与溶解的差异,呈现先增大而后降低到一个均衡值的变化趋势。  相似文献   

8.
采用TiN/Ag—Cu—Ti复合钎料连接Si3N4陶瓷材料,采用扫描电镜观察了接头组织。TiN颗粒与Ag—cu组织结合紧密,并未与钎料基体进行反应,在钎缝中分布比较均匀,形成了局部金属基复合材料组织。由于颗粒与液态钎料之间能够形成较强的毛细作用,提高了活性元素Ti扩散的能力,Ti元素能够充分扩散到钎料与母材的界面上进行反应,生成一层致密的反应层。接头抗剪强度表明,在一定范围内,采用复合钎料可以明显提高接头强度。  相似文献   

9.
La对Sn-Ag-Cu无铅钎料与铜钎焊接头金属间化合物的影响   总被引:3,自引:1,他引:3  
研究微量稀土La在钎焊和时效过程中对Sn-3.0Ag-0.5Cu无铅钎料与铜基板的钎焊界面及钎料内部金属间化合物(IMC)的形成与生长行为的影响.结果表明:钎焊后钎焊界面形成连续的扇形Cu6Sn5化合物层,其厚度随La含量的增加而减小;在150℃时效100h后,连续的Cu3Sn化合物层在Cu6Sn5化合物层和铜基板之间析出,且Cu6Sn5层里嵌有Ag3Sn颗粒;界面金属间化合物总厚度随时效时间的延长而增厚,且在相同时效条件下随La含量的增加而减小;时效过程中金属间化合物生长动力学的时间系数(n)随着La含量的增加逐渐增大;钎焊后钎料内部Ag仍以共晶形式存在,时效后Ag3Sn颗粒沿钎料内部的共晶组织网络析出.  相似文献   

10.
针对TC4钛合金仿莲房特征芯体与面板钎焊工艺,采用TiZrCuNi钎料,开展了钎焊工艺研究,并分析了主要钎焊工艺参数对钎焊界面组织和夹层结构力学性能的影响。结果表明:钎焊温度920℃,保温时间90min时, TC4钛合金仿莲房特征芯体夹层结构钎焊后界面焊合率良好,界面显微组织为均匀针状α组织和界面金属间化合物,夹层结构平压强度均值为15.14MPa。钎焊保温时间对TC4钛合金仿莲房特征芯体钎焊界面显微组织影响显著,当钎焊保温时间较短时(15min),钎料熔化后,液态钎料中Cu和Ni元素与母材反应时间较短,钎料中Cu和Ni向母材中的扩散反应不充分,钎缝区局部Cu和Ni元素富集导致Cu和Ni元素含量超过共晶成分点,钎焊保温结束后液态钎缝凝固时发生共晶反应,生成块状金属间化合物,钎焊界面主要为含有块状金属间化合物的凝固钎料组织和针状α组织;随着钎焊保温时间的增加,液态钎料中Cu和Ni元素与母材反应时间增加,钎料中Cu和Ni元素向母材中扩散反应深度显著增加,从而Cu和Ni元素在液态钎料中的含量显著降低,元素含量小于共晶成分点,钎焊保温结束后液态钎缝凝固时Cu和Ni元素固溶于β相中,避免大量块状金属化合物生成,随后β相向α相的固态相变时,共析反应生成针状α相,在针状α组织界面处生成金属间化合物。钎焊时间保温时间从15min升至90min时,由于钎焊界面金属间化合物减少,TC4钛合金仿莲房特征芯体夹层结构的平压强度逐渐增加。  相似文献   

11.
对陶瓷表面先进行金属化处理,再使用常规钎料钎焊陶瓷与金属,利用无氧铜环作为过渡层来缓解钎焊过程中产生的残余应力,可获得无焊接缺陷、气密性良好的电气贯穿件馈通线。SEM和EDS分析结果表明,无氧铜棒与无氧铜环钎焊接头主要由灰色的Cu基固溶体、白色的Ag基固溶体及Ag-Cu共晶组织组成。陶瓷与无氧铜环钎焊接头、陶瓷与可伐合金钎焊接头主要由Cu基固溶体、Ag-Cu共晶组织、Cu-Ni固溶体组成。  相似文献   

12.
银基钎料铸锭微区成分及组织的变化规律   总被引:1,自引:1,他引:0       下载免费PDF全文
钎料铸锭成分均匀性及组织形态是钎料成形的初始条件,对钎料塑性加工性能及加工后组织有重大的影响. 通过OM,SEM和EDS等分析测试手段,研究了BAg30CuZnSn钎料铸锭的微区成分变化规律. 结果表明,BAg30CuZnSn钎料铸锭中,沿径向由外向内方向,Ag元素含量逐渐降低,Cu,Zn元素含量逐渐升高. 冒口处,由下到上,Ag元素含量逐渐降低,Cu,Zn元素含量逐渐升高. 成分的变化导致铸锭组织发生变化,从铸锭外部到中心部位,晶粒尺寸逐渐粗大,呈现出由最初的随机分布转向成簇分布. 铸锭中心位置出现Ag元素含量较高的枝晶,为银的富集相.  相似文献   

13.
Ag元素对Zn-Al钎料性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了Ag元素的添加量对Zn-Al钎料的熔化温度、铺展性能、接头力学性能以及显微组织的影响.结果表明,随着Al元素含量的增加,钎料的熔化温度略有提高,在铝板及铜板上的铺展性能明显改善,钎焊接头力学性能显著提高.当Ag元素的添加量达到3.3%(质量分数)时,钎焊接头力学性能最佳.继续增加Al元素含量,钎焊接头强度变化不大.在Zn-Al钎料中添加Ag元素能够显著改善钎缝的显微组织,随着Al元素含量的增加,钎缝内部块状铜铝脆性相尺寸变小,产生应力集中的倾向减小,对应的接头强度提高.当Al元素含量达到3.3%(质量分数)时,钎料的综合性能最佳.  相似文献   

14.
采用铜箔、Al-Si-Mg及Al-Si-Mg/Cu/Al-Si-Mg(简称ACA)3种不同中间层对高体积分数45%SiCp/Al复合材料进行真空钎焊连接研究.通过SEM,EDS及XRD等方法对钎缝的微观结构及界面组织进行了分析,研究了中间层种类对钎焊接头微观结构、界面组织以及连接强度的影响,阐明了不同中间层钎焊连接45%SiCp/Al复合材料的界面形成过程及接头断裂机制.结果表明,ACA中间层兼具了铜和Al-Si-Mg钎料的优点,可降低钎料的液相线,增加其流动性,通过Cu原子优先在铝合金基体与其氧化膜的界面处扩散发生共晶反应,增强钎料的去膜作用,从而实现高体积分数45%SiCp/Al复合材料的高质量连接.  相似文献   

15.
采用Ag-Cu-Ti钎料对常压烧结的SiC陶瓷与TiAl金属间化合物进行了真空钎焊,并对接头的微观组织和室温强度进行了研究。结果表明,利用Ag-Cu-Ti钎料可以实现SiC与TiAl的连接;接头界面具有明显的层状结构,即由Ti-Cu-Si合金层、富Cu相与富Ag相的双相层和Ti-Al-Cu合金层组成;在1173K和10min的钎焊条件下,接头室温剪切强度达到173MPa。  相似文献   

16.
使用BAg72Cu钎料对TU2无氧铜与稀有金属铪(Hf)进行真空钎焊。借助金相显微镜、超景深显微镜、扫描电镜、能谱分析、室温剪切试验等手段,分析了钎焊工艺参数(钎焊温度和保温时间)对钎焊接头组织及性能的影响。结果表明:真空钎焊后获得的焊缝组织致密而连续,焊缝区均存在三个不同形貌的区域:铪侧的黑色区、中间花纹状Ag-Cu共晶区和铜侧的峰峦状或鹅卵石状铜基固溶体区。随着钎焊温度升高和保温时间的延长,焊缝中峰峦状或鹅卵石状组织越来越大,黑色区也越来越宽,而中间共晶区则减小。黑色带状区域中的Hf元素含量均大于4%,明显超过了相图中Hf在Ag、Cu中的饱和固溶度,说明该区域中不可能仅存在铜或银与铪的二元固溶体组织,有可能存在三元固溶体或含铪金属化合物。两种工艺参数均对接头的剪切破断应力影响不大。  相似文献   

17.
以Ag—Cu—Ti箔状钎料对钛合金TCA和不锈钢1Cr18Ni9Ti进行了真空钎焊。采用扫描电镜、能谱分析、金相显微镜和x一射线衍射等分析测试手段对钎焊过程中所形成的反应产物和接头界面结构进行了分析。结果表明:接头界面形成了Ti(s.s)、AS(s.s)、Ti—Cu金属问化合物等反应产物。连接温度较低(920℃)时,界面结构依次为1Cr18Ni9Ti/TiCu/Ag(s.s)+少量Ti2cu/%2cu/Ti2cu+Ti(s.s)/TC4;连接温度升高(960oC)时,界面结构为1Crl8Ni9Ti/Ti:Cu/Ti:Cu+矩(s.s)/Ti2Cu/Ti2Cu+Ti(s.s)/TCA;连接温度较高(1000oC)时,界面结构为1Crl8Ni9Ti/TiCu2/TiCu/Ti2Cu/Ti:Cu+Ti(s.s)/TC4。提高钎焊温度与延长保温时间对钎焊接头界面组织结构有相似的影响,各反应相、反应层逐渐长大,金属问化合物反应相所占比例增大,而Ag(s.s)组织所占的比例变得更小,这种趋势随着焊接工艺参数的提高更加明显。  相似文献   

18.
对带锡镀覆层的银钎料进行热扩散处理,采用差示扫描量热仪(DSC)、扫描电镜(SEM)、X射线衍射仪(XRD)研究热扩散工艺对其熔化温度和扩散界面组织、物相的影响. 结果表明,在扩散时间一定条件下,随着扩散温度升高,扩散界面层厚度增加;随着扩散温度升高或扩散时间延长,钎料的固、液相线温度均降低,熔化温度区间缩小;扩散界面层物相主要由棒状Ag3Sn相和块状Cu3Sn相组成;最佳热扩散工艺为220 ℃,24 h. 经最佳工艺处理后,扩散界面层厚度为9.1 μm,钎料中Sn含量为7.2%,此时钎料熔化温度区间为642.34 ℃~676.37 ℃. 与传统熔炼合金化方法相比,钎料中Sn含量提高近31%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号