首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simultaneous measurement of microgram per liter concentration levels of indium(III), thallium(I) and zinc(II) at the antimony film carbon paste electrode (SbF-CPE) is demonstrated. The antimony film was deposited in situ on a carbon paste substrate electrode and employed in chronopotentiometric stripping mode in deoxygenated solutions of 0.01 M hydrochloric acid (pH 2). The chronopotentiometric stripping performance of the SbF-CPE was studied and compared with constant current chronopotentiometric stripping and anodic stripping voltammetric operation. In comparison with its bismuth and mercury counterparts, the SbF-CPE exhibited advantageous electroanalytical performance; namely, at the bismuth film electrode, the measurement of zinc(II) was practically impossible due to hydrogen evolution, whereas the mercury film electrode exhibited a poorly developed signal for thallium(I). The SbF-CPE revealed favorable calculated LoDs (3σ) of 1.4 μg L−1 for thallium(I) and 2.4 μg L−1 for indium(III) along with good linear response in the examined concentration range from 10 to 100 μg L−1 with correlations coefficients (R2) of 0.992 for thallium(I) and 0.994 for indium(III) associated with a 120 s deposition time. The chronopotentiometric stripping performance of the SbF-CPE was characterized also by satisfactory reproducibility of 1.62% for indium(III), 3.96% for thallium(I) and 2.11% for zinc(II) (c = 40 μg L−1, n = 11).  相似文献   

2.
The antimony film carbon paste electrode (SbF-CPE) was prepared in situ on the carbon paste substrate electrode as a “mercury-free” electrochemical sensor. Its aptitude for measuring some selected trace heavy metals has been demonstrated in combination with square-wave anodic stripping voltammetry in non-deaerated model solutions of 0.01 M hydrochloric acid with pH 2. Some important operational parameters, such as deposition potential, deposition time, and concentration of antimony ions were optimized, and the electroanalytical performance of the SbF-CPE was critically compared with both bismuth film carbon paste electrode (BiF-CPE) and mercury film carbon paste electrode (MF-CPE) using Cd(II) and Pb(II) as test metal ions. In comparison with BiF-CPE and MF-CPE, the SbF-CPE exhibited superior electroanalytical performance in more acidic medium (pH 2) associated with favorably low hydrogen evolution, improved stripping response for Cd(II), and moreover, stripping signals corresponding to Cd(II) and Pb(II) at the SbF-CPE were slightly narrower than those observed at bismuth and mercury counterparts. In addition, the comparison with antimony film electrode prepared at the glassy carbon substrate electrode displayed higher stripping current response recorded at the SbF-CPE. The newly developed sensor revealed highly linear behavior in the examined concentration range from 5 to 50 μg L−1, with limits of detection (3σ) of 0.8 μg L−1 for Cd(II), and 0.2 μg L−1 for Pb(II) in connection with 120 s deposition step, offering good reproducibility of ±3.8% for Cd(II), and ±1.2% for Pb(II) (30 μg L−1, n = 10). Preliminary experiments disclosed that SbF-CPE and MF-CPE exhibit comparable performance for measuring trace concentration levels of Zn(II) in acidic medium with pH 2, whereas its detection with BiF-CPE was practically impossible. Finally, the practical applicability of SbF-CPE was demonstrated via measuring Cd(II) and Pb(II) in a real water sample.  相似文献   

3.
Bismuth-powder modified carbon paste electrode (Bi-CPE) is presented as an attractive “mercury-free” sensor applicable in electrochemical striping analysis of selected heavy metals. The electrode paste was prepared as a mixture of finely powdered metallic bismuth together with graphite powder and silicon oil. The Bi-CPE was characterized in nondeaerated solutions containing Cd(II) and Pb(II) at the μg/L level in conjunction with square-wave anodic stripping voltammetry. The electrode exhibited well-defined and separated stripping signals for both metals accompanied with a low background contribution, and a reproducibility of 5.6 and 6.0% (n = 12) for 20 μg/L Cd(II) and Pb(II), respectively. The Bi-CPE exhibited superior performance in comparison to the bare carbon paste electrode (CPE) and the bismuth paste electrode (BiPE) and surprisingly, yielded a higher response than the in situ prepared bismuth-film carbon paste electrode. The electrode displayed excellent linear behavior in the examined concentration range from 10 to 100 μg/L Cd(II) + Pb(II) (R2 = 0.998 for both), with limits of detection of 1.2 μg/L for Cd(II) and 0.9 μg/L for Pb(II). The electroanalytical performance of Bi-CPE was successfully tested in a real sample of tap water spiked with Cd(II) and Pb(II).  相似文献   

4.
Here we investigated the analytical performances of the bismuth-modified zeolite doped carbon paste electrode (BiF-ZDCPE) for trace Cd and Pb analysis. The characteristics of bismuth-modified electrodes were improved greatly via addition of synthetic zeolite into carbon paste. To obtain high reproducibility and sensitivity, optimum experimental conditions for bismuth deposition were studied. Voltammetric responses of the BiF-ZDCPEs prepared with different ratios of zeolite, carbon powder, and silicone, were examined under same conditions. The in situ plated (zeolite/graphite powder/silicone, 10/190/80 w/w) BiF-ZDCPEs exhibited the most sensitive response to Cd and Pb in 0.10 M acetate buffer (pH 4.5). The detection limits of the modified electrode were 0.08 μg L−1 for Cd(II) and 0.10 μg L−1 for Pb(II) based on three times the standard deviation of the baseline with a preconcentration time of 120 s under optimal conditions, respectively. The modified electrode showed well linear response to both Cd(II) and Pb(II) over the concentration range from 1.0 to 20.0 μg L−1. The BiF-ZDCPEs were successfully applied to the determination of Cd(II) and Pb(II) in real samples, and the results were in agreement with those of atomic absorption spectroscopy (AAS).  相似文献   

5.
This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, −200 mV and 300 s, respectively, and the scan rate at 50 mV s−1 in the scan range of −200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.  相似文献   

6.
In this paper, two disposable screen-printed antimony film electrodes (SPSbFEs) modified with multi-walled carbon nanotubes (MWCNTs) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), respectively for electrochemical stripping measurement are introduced. The modified screen-printed electrode substrate was prepared by homogeneously doping the attractive material into the graphite-based printing ink, and then an antimony film was in situ formed by simultaneously electrodepositing the antimony precursor with interesting analytes on the modified substrate. The electroanalytical performance of the modified SPSbFE for heavy metals based on the anodic stripping protocol was intensively evaluated. It was found that stripping voltammetric measurements of mercury (II) and lead (II) at the modified SPSbFEs resulted in good peaks with very low background contribution. In comparison with the bare SPSbFE, the modifications of both MWCNTs and [Bmim]BF4 were demonstrated providing more sensitive responses. The results indicated that the SPSbFE modified with 4 wt% [Bmim]BF4 exhibited well linear behavior in the mercury (II) concentration range from 20 to 140 μg/L (R2 = 0.998) with a detection limit of 0.36 μg/L (S/N = 3) under a 120 s accumulation, and good repeatability with a relative standard deviation (RSD) of 4.16% (40 μg/L, n = 12). The proposed electrodes, as new styles of “mercury-free” electrodes, also exhibit encouraging properties for measurements of practical samples.  相似文献   

7.
Poly(o-aminophenol) (POAP) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode. The electrochemical behavior of the SDS-POAP carbon paste electrode has been investigated by cyclic voltammetry in 0.5 M HClO4 and 5 mM K4[Fe(CN)6]/0.1 M KCl solutions as the supporting electrolyte and model system, respectively. Ni(II) ions were incorporated into the electrode by immersion of the polymeric modified electrode having amine groups in 0.1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode. A good redox behavior of the Ni(III)/Ni(II) couple at the surface of electrode can be observed. The electrocatalytic oxidations of methanol and ethylene glycol (EG) at the surface of the Ni/SDS-POAP electrode were studied in a 0.1 M NaOH solution. Compared to bare carbon paste and POAP-modified carbon paste electrodes, the SDS-POAP electrode significantly enhanced the catalytic efficiency of Ni ions for methanol oxidation. Finally, using a chronoamperometric method, the catalytic rate constants (k) for methanol and ethylene glycol were found to be 2.04 × 105 and 1.05 × 107 cm3 mol−1 s−1, respectively.  相似文献   

8.
The simultaneous voltammetric determination of dihydroxybenzene isomers was investigated using cyclic and differential pulse voltammetries at the amino-functionalized SBA-15 mesoporous silica-modified carbon paste electrode (NH2-SBA15/CPE) in phosphate buffer solution (pH 6.0). The NH2-SBA15/CPE showed a larger peak current and higher selectivity for the dihydroxybenzene isomers in comparison with the bare carbon paste electrode (CPE) and SBA-15 mesoporous silica-modified carbon paste electrode (SBA15/CPE). The oxidation peak potential difference between hydroquinone (HQ) and catechol (CC) was 115 mV and was 396 mV between catechol and resorcinol (RC). This indicated that catechol, resorcinol and hydroquinone could be identified entirely at the NH2-SBA15/CPE. Under the optimized conditions, the amperometric currents were linear over ranges from the following: 0.8–160 μmol L−1 for hydroquinone, 1.0–140 μmol L−1 for catechol and 2.0–160 μmol L−1 for resorcinol. The detection limits were 0.3, 0.5 and 0.8 μmol L−1, respectively. The proposed electrode can be applied to the simultaneous determination of dihydroxybenzene isomers in mixtures without previous chemical or physical separations.  相似文献   

9.
Poly (1,5-diaminonaphthalene) film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of carbon paste electrode. Then transition metal ions of Ni(II) were incorporated to the polymer by immersion of the modified electrode in a 1.0 M nickel chloride solution. The electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)/Ni(II) couple. Also, cyclic voltammetric experiments showed that methanol electrooxidized at the surface of this Ni(II) dispersed polymeric modified carbon paste electrode [Ni/P-1,5-DAN/MCPE]. The mechanism of methanol oxidation changes from diffusion control at low concentration to a catalytic reaction at higher methanol concentration. The effects of both scan rate and methanol concentration on the anodic peak height of the methanol oxidation were discussed.  相似文献   

10.
The deposition and stripping processes of lead and copper and cadmium ions over the wide concentrations range of 1 × 10−5 to 5 × 10−9 M, have been studied at mercury film deposited on wax impregnated carbon paste electrode, using cyclic voltammetry, linear sweep anodic stripping voltammetry and differential pulse anodic stripping voltammetry. The carbon paste electrode modified with the mercury film was characterized for its physical and electrochemical properties. The parameters of deposition and stripping processes of the analytes have been investigated using standard solution of the metal ions at various concentrations and different supporting electrolytes and different pH. The linear sweep anodic stripping has been adopted for the determination of analytes at higher concentration whereas the analytes at lower concentrations were determined using DPASV. The DPASV behavior for the ions studied dependent on concentrations of the analyte as well as on the time used in the pre-concentration step. The method developed using standard solutions have been successfully applied for the determination of Cu(II), Pb(II) and Cd(II) in Fin Fish muscles and water samples.  相似文献   

11.
The effect of Bi(III) concentration (over the wide concentration range of 10−7 to 10−4 M) on the determination of Pb and Cd metal ions (in the 10−8 to 10−5 M range), by means of anodic stripping voltammetry (ASV) at in situ bismuth-coated carbon paste (CPE) and gold electrodes, has been studied. It is shown that in square wave anodic stripping voltammetry (SWASV) experiments the sensitivity of the technique generally depends on the Bi(III)-to-metal ion concentration ratio. It was found that, unlike the usually recommended at least 10-fold Hg(II) excess in anodic stripping experiments at in situ prepared mercury film electrodes, Bi(III)-to-metal ion ratios less than 10 are either optimal or equally effective at CPE and Au electrode substrates. Detection limits down to 0.1 μg L−1 for Pb(II) and 0.15 μg L−1 for Cd(II) were estimated at CPEs under conditions of small or moderate Bi(III) excess. Depending on Bi(III) concentration and deposition time, multiple stripping peaks attributed to Bi were recorded (especially in the case of Au substrates), indicating various forms of Bi deposits.  相似文献   

12.
Lead film electrodes (PbFEs) deposited in situ on glassy carbon or carbon paste supports have recently found application in adsorptive stripping voltammetric determination of inorganic ions and organic substances. In this work, the PbFE, prepared in ammonia buffer solutions, was investigated using scanning electron microscopy, atomic force microscopy and various voltammetric techniques. The microscopic images of the lead films deposited on the glassy carbon substrate showed a considerable variability in microstructure and compactness of the deposited layer depending on the selected experimental conditions, such as the concentration of Pb(II) species, the nucleation and deposition potential, and the time applied. The catalytic adsorptive systems of cobalt and nickel in a solution containing 0.1 ammonia buffer, 2.5 × 10−5 M nioxime and 0.25 M NaNO2 were employed to investigate the electrochemical characteristics and utility of the in situ prepared lead films.The optimal parameters, i.e. the lead concentration in the solution, the procedure of film removal, and the time and potential of lead nucleation and film deposition for the adsorptive determination of metal traces, were selected, resulting in the very good reproducibility (RSD = 4.2% for 35 scans) of recorded signals. The voltammetric utility of the lead film electrode was compared to that of glassy carbon, mercury film and bismuth film electrodes, and was subsequently evaluated as superior.  相似文献   

13.
A bismuth-film electrode (BiFE) was applied in square-wave anodic stripping voltammetry (SWASV) in order to determine Sn (IV) in biodiesel samples. In situ simultaneous deposition of tin and bismuth at −1.2 V for 90 s was carried out in a supporting electrolyte containing 0.1 mol L−1 acetate buffer (pH 4.5) and 1.73 mmol L−1 caffeic acid as the complexing agent. A single well-defined anodic stripping peak was observed at −0.58 V for the oxidation of Sn to Sn (II), which was used as the analytical signal. The calibration curve was obtained in the concentration range of 0.17–7.83 μmol L−1 with the detection limit being 0.14 μmol L−1 (r = 0.9990). Repeatability and reproducibility for the measurement of the current peak were characterized by relative standard deviations of 3.6% and 4.1%, respectively, for a 5.0 μmol L−1 Sn (IV) solution (n = 10). The method was validated by comparing the results obtained with those provided by application of the atomic absorption spectroscopy technique.  相似文献   

14.
A new voltammetric sensor for caffeine measurement is introduced. A caffeine-selective molecularly imprinted polymer (MIP) and a non-imprinted polymer (NIP) were synthesized and then used for carbon paste (CP) electrode preparation. The MIP, embedded in the carbon paste electrode, functioned as a selective recognition element and a pre-concentrator agent for caffeine determination. The prepared electrode was used for caffeine measurement via a three-step procedure including analyte extraction in the electrode, electrode washing and electrochemical measurement of caffeine. The MIP-CP electrode showed very high recognition ability in comparison to NIP-CP. It was shown that electrode washing after caffeine extraction led to enhanced selectivity. Differential pulse voltammetry for caffeine determination was more effective than square wave voltammetry. Some parameters affecting sensor response were optimized, and a calibration curve was then plotted. A linear range of 6 × 10−8 to 2.5 × 10−5 mol L−1 was obtained. The detection limit of the sensor was calculated to be equal to 1.5 × 10−8 mol L−1. This sensor was used successfully for caffeine determination in spiked beverage and tea samples.  相似文献   

15.
A simply prepared carbon nano tube paste electrode (CNTPE) was utilized for monitoring mercury ion concentration using the cyclic voltammetry (CV) method and the square wave anodic stripping voltammetric (SWASV) method. The CNTPE was compared with various conventional electrodes. The CNTPE method was applied to determine the concentration of trace levels of Hg(II) in several water samples, which yielded a relative error of 0.6% with a concentration of 0.20 mg L–1 Hg(II). It was deposited at –0.5 V (vs Ag/AgCl), which was subsequently reduced to +0.20 V to strip it on the CNTPE. The optimal experimental conditions for the analysis were found to be as follows: pH value of 4 for the medium; deposition potential of –0.5 V; deposition time of 210 s; SW frequency of 40 Hz; SW amplitude of 100 mV, and step potential of 25 mV. Given these optimum conditions, a linear range was observed within the concentrations of 1.0–25.0 g L–1 and 40.0–200.0 g L–1. The detection limit was found to be 0.42 g L–1.  相似文献   

16.
A promising electrochemical sensor was developed based on a layer by layer process by electro-polymerization of pyrrole in the presence of new coccine (NC) as dopant anion on the surface of the multi-walled carbon nanotubes (MWCNTs) pre-coated glassy carbon electrode (GCE). The modified electrode was used as a new and sensitive electrochemical sensor for voltammetric determination of sumatriptan (SUM). The electrochemical behavior of SUM was investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results showed a remarkable increase (∼12 times) in the anodic peak current of SUM in comparison to the bare GCE. The effect of experimental variables such as, drop size of the casted MWCNTs suspension, pH of the supporting electrolyte, accumulation conditions and the number of cycles in the electro-polymerization process on the electrode response was investigated. Under the optimum conditions, the modified electrode showed a wide linear dynamic range of 0.02–10.0 μmol L−1 with a detection limit of 6 nmol L−1 for the voltammetric determination of SUM. The prepared electrode showed high sensitivity, stability and good reproducibility in response to SUM. This sensor was successfully applied for the accurate determination of trace amounts of SUM in pharmaceutical and clinical preparations.  相似文献   

17.
In this work, SiO2/Sb2O3 prepared by the sol-gel processing method, having a specific surface area, SBET, of 790 m2 g−1, an average pore diameter of 1.9 nm and 4.7 wt.% of Sb, was used as substrate base for immobilization of the 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine ion. Cobalt(II) ion was inserted into the porphyrin ring with a yield of complex bonded to the substrate surface of 59.4 μ mol g−1. A carbon paste electrode of this material was used to study, by linear sweeping voltammetric and chronoamperometric techniques, the electrocatalytic reduction of dissolved oxygen. The reduction, at the electrode solid-solution interface, occurred at −0.25 V versus SCE in 1.0 mol l−1 KCl solution, pH 5.5, by a four electron mechanism. The electrode response was invariant under various oxidation-reduction cycles showing that the system is chemically very stable. Such characteristics allowed the study of the electrode response towards various dissolved oxygen concentrations using the chronoamperometry technique. The cathodic peak current intensities plotted against O2 concentrations, between 1.0 and 12.8 mg l−1, showed a linear correlation. The electrode response time was very fast, i.e. about 1 s. This study was extended using the electrode to determine the concentration of dissolved oxygen in sea water samples.  相似文献   

18.
Ivana Cesarino 《Fuel》2010,89(8):1883-1888
A graphite-polyurethane composite modified with 2-benzothiazolethiol organofunctionalized silica was evaluated as an alternative electrode in the determination of Cu2+ ions in ethanol fuel samples, on the basis of a differential pulse anodic stripping voltammetry procedure. This metal can be quantified by mixing ethanol fuel with 0.10 mol L−1 KNO3 aqueous solution and subsequent voltammetric measurement after the accumulation step. A maximum limit of 70% (v/v) ethanol in potassium nitrate aqueous solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Factors affecting the pre-concentration and stripping steps were investigated and optimum conditions were employed to develop the analytical procedure. Using 20 min of accumulation time, the linear range of 0.1-1.2 μmol L−1 was obtained with the limit of detection of 3.9 × 10−8 mol L−1. The developed electrode was successfully applied to determine Cu2+ in commercial ethanol fuel samples. The proposed method was compared with a traditional analytical technique, the flame atomic absorption spectrometry, and no significant differences between the results obtained by both methods were observed according to statistical evaluation.  相似文献   

19.
By using a specific electrochemical cell with a rotating glassy carbon process vessel as the working electrode, a significant enhancement of mercury determination comparing to commonly used disc electrodes of glassy carbon was achieved. Detection limit obtained for electrolysis time of 600 s was 0.1 ng dm− 3 of Hg(II). The influence of the most important experimental factors of chronopotentiometric stripping analysis was investigated and the defined method was applied for mercury determination in different types of waters without any pretreatment. Methods accuracy was confirmed by analysing standard reference material. Obtained results showed that similar electrochemical systems can be proposed for continual or semicontinual monitoring of mercury content in different types of waters.  相似文献   

20.
The catalytic oxidation of hydrazine was investigated by a cobalt(II) bis (benzoylacetone) ethylenediimino multi wall carbon nanotube-modified carbon paste electrode (Co(II)BBAEDI-MWCNT-MCPE) as a highly sensitive electrochemical sensor. The effect of variables such as pH and modifier percent on cyclic voltammograms peak current was optimized. The modified electrode showed very efficient electrocatalytic activity for anodic oxidation of hydrazine in 0.1 M phosphate buffer solution (pH 7.0). Anodic peak potential of hydrazine oxidation at the surface of modified electrode shifts by about 500 mV toward negative values compared with that on the bare electrode. The diffusion coefficient and electron transfer coefficient of hydrazine were obtained using electrochemical approaches. The Co(II)BBAEDI-MWCNT-MCPE showed good reproducibility (RSD < 3.3%). The electrocatalytic current increased linearly with the hydrazine concentration in the range of 0.3–70.0 μM and detection limit was 0.1 μM. The effect of various interferences on the hydrazine peak current was studied. This method was applied to determine hydrazine in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号