首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Multi-walled carbon nanotubes reinforced nylon 6 composites   总被引:1,自引:0,他引:1  
Multiwalled carbon nanotubes (MWNT) were functionalized with amine groups using a ‘grafting to’ technique. The oxidized MWNT (MWNT-COOH) were converted to the acyl chloride functionalized MWNT (MWNT-COCl) by treating them with thionyl chloride (SOCl2), and then MWNT-COCl was reacted with hexamethylenediamine to prepare MWNT-NH2. The formation of MWNT-NH2 was confirmed through the FTIR observation. MWNT-NH2/nylon 6 composites with different MWNT loadings were prepared by the simple melt compounding approach. A fine dispersion of MWNTs throughout nylon 6 matrix was observed by SEM and TEM. The fractured surface of the composites showed not only a uniform dispersion of MWNTs but also a strong interfacial adhesion with the matrix, as evidenced by the presence of many broken but strongly embedded MWNTs in the matrix in the absence of debonding of MWNTs from the matrix. Incorporation of MWNTs improved the mechanical properties significantly. Higher thermal stability was obtained for the composites with better dispersed MWNTs.  相似文献   

2.
Multiwalled carbon nanotubes (MWNTs) were functionalized with polyhedral oligomeric silsesquioxane (POSS) via amide linkages. The oxidized MWNT (MWNT-COOH) was converted to the acyl chloride-functionalized MWNT (MWNT-COCl) by treating them with thionyl chloride (SOCl2), and then MWNT-COCl was reacted with aminopropylisooctyl-POSS to prepare aminopropylisooctyl polyhedral oligomeric silsesquioxane modified MWNT (MWNT-g-POSS). Energy-filtering TEM, FTIR, and Raman spectroscopy revealed that the POSS was covalently attached to the MWNT and the weight gain due to the functionalization was determined by the thermogravimetric analyses (TGA). PLLA/MWNT and PLLA/MWNT-g-POSS composites with different MWNT loadings were first prepared by the simple solvent casting approach. A fine dispersion of MWNT-g-POSS throughout PLLA matrix was observed by SEM. Moreover, the composites were also prepared by using melt compounding under the different shearing speed of extruder via our custom-built high-shear extruder. A special feedback-type screw was used in this extruder to realize a high shearing flow field. Using this new technique, a uniform dispersion of the neat MWNTs in the PLLA matrix was found under higher screw rotation speed (≥1500 rpm) while poor dispersion was observed under low speed (<1500 rpm). The homogeneous dispersion of MWNTs throughout the PLLA/MWNT-g-POSS composites without any aggregation was observed at full range of screw rotation speed. The fractured surface of the composites showed not only a uniform dispersion of MWNTs but also a strong interfacial adhesion with the matrix, as evidenced by the presence of many broken but strongly embedded MWNTs in the matrix in the absence of debonding of MWNTs from the matrix. Incorporation of MWNTs improved the mechanical properties.  相似文献   

3.
Hydroxyl functionalized multiwalled carbon nanotubes (H‐MWNTs) were silanized using 3‐aminopropyltriethoxysilane (APTES) in order to improve the dispersion and interfacial interaction in composites. MWNT/polycarbonate (PC) composites filled with H‐MWNTs and silanized MWNTs (S‐MWNTs) were fabricated by melt mixing and injection molding. Fourier transform infrared spectrometry (FTIR) and energy dispersion X‐ray spectroscopy (EDS) were employed to prove the presence of APTES on the surface of S‐MWNTs. In addition, thermogravimetric analysis (TGA) was used to evaluate the relative amount of introduced APTES. The microstructure and mechanical property of both composites were investigated by scanning electron microscopy (SEM), transmission electron microscope (TEM), tensile test and dynamic mechanical analysis (DMA). The SEM and TEM images showed that S‐MWNT/PC composites had better dispersion and interfacial adhesion than H‐MWNT/PC composites. A reinforcing and toughening effect on tensile behavior of composites was obtained after silane functionalization. The storage modulus of composites increased markedly as a function of MWNTs content, especially for the composites with S‐MWNTs. In summary, the silanization can improve the dispersion of MWNTs and the interfacial adhesion between MWNTs and PC so as to enhance the mechanical properties of composites. POLYM. COMPOS., 37:1914–1923, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
Yaobang Zou 《Carbon》2004,42(2):271-277
Multi-walled carbon nanotube (MWNT) composites were fabricated using the screw extrusion and injection technique. The polymer-wrapped MWNTs were dispersed in fumed silicon dioxide with the help of ultrasonic stirring, and then further dispersed in a high density polyethylene (HDPE) matrix by a twin-screw extruder. It was found that there was a critical MWNT concentration around 1.0 wt% where a fine network of MWNT/SiO2 was formed. This gives the MWNT/HDPE composites much improved mechanical properties. From the mechanical property, it was found that the surface treatment of MWNT/SiO2 had a large effect on the performance of the composites. Thermogravimetric analysis (TGA) measurement showed that MWNT could stabilize HDPE when its weight content was greater than 2.0 wt%, whereas silicon dioxide accelerated thermo-oxidation of the composites.  相似文献   

5.
In this work, multi-walled carbon nanotube (MWNT) bonded graphene (M-GR) composites were prepared using the chemical reduction of graphite oxide (GO) and acid treated MWNTs with different ratios. The M-GR/polyaniline (PANI) nanocomposites (M-GR/PANI) were prepared using oxidation polymerization. The effect of the M-GR ratio on the electrochemical performances of the M-GR/PANI was investigated. It was found that the substrate 2D graphene was coated with 1D MWNTs by chemical reduction and the M-GR was further coated with PANI, leading to increased electrical properties by the π–π interaction between the M-GR and PANI. In addition, the electrochemical performances, such as the current density, charge–discharge, and specific capacitance of the M-GR/PANI were higher than those of graphene/PANI and the highest specific capacitance (1118 F/g) of the composites was obtained at a scan rate of 0.1 A/g for the PANI containing a 0.5 M-GR ratio compared to 191 F/g for the graphene/PANI. The dispersion of the MWNTs onto the graphene surface and the ratio of M-GR had a pronounced effect on the electrochemical performance of the PANI-based composites, which was attributed to the highly conductive pathway created by the M-GR incorporated in the PANI-based composites and the synergistic effect between M-GR and PANI.  相似文献   

6.
In this article, we present the effects of incorporated multiwalled nanotubes (MWNTs) on a metal surface and the bulk mechanical properties of as‐synthesized polystyrene (PS)–MWNT composites prepared with the twin‐screw mixing technique. The MWNTs used for preparing the composites were raw compounds that were not treated with any surface modifications. The morphology for the dispersion capability of the MWNTs in the PS matrix was subsequently characterized with transmission electron microscopy. Surface mechanical property studies (i.e., wear resistance and hardness) showed that the integration of MWNTs led to a distinct increase in the wear resistance and also the micro/nanohardness with up to a 5 wt % MWNT loading in the composites. Moreover, the enhancement of the wear resistance of the as‐prepared composites, in comparison with pure PS, was further identified with scanning electron microscopy observations of the surface morphology after testing. On the other hand, for bulk mechanical property studies (i.e., the tensile strength and flexural strength), the composites containing a 3 wt % concentration of MWNTs in the PS matrix exhibited the best performance with respect to the tensile strength and flexural strength. This means that this composition of MWNTs exhibited good compatibility with the PS matrix, and this can be attributed to the π–π interacting forces existing between the aromaticity of the MWNTs and PS matrix. Furthermore, at higher MWNT loadings (e.g., 5 wt %), raw MWNTs were aggregated in the polymer matrix, as observed by transmission electron microscopy. Also, this led to an obvious decrease in the tensile strength and flexural strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
BACKGROUND: The technological development of poly(ε‐caprolactone) (PCL) is limited by its short useful lifespan, low modulus and high crystallinity. There are a few papers dealing with the crystallization behavior of carbon nanotube‐reinforced PCL composites. However, little work has been done on the crystallization kinetics of melt‐compounded PCL/multiwalled carbon nanotube (MWNT) nanocomposites. In this study, PCL/MWNT nanocomposites were successfully prepared by a simple melt‐compounding method, and their morphology and mechanical properties as well as their crystallization kinetics were studied. RESULTS: The MWNTs were observed to be homogeneously dispersed throughout the PCL matrix. The incorporation of a very small quantity of MWNTs significantly improved the storage modulus and loss modulus of the PCL/MWNT nanocomposites. The nonisothermal crystallization behavior of the PCL/MWNT nanocomposites exhibits strong dependencies of the degree of crystallinity (Xc), peak crystallization temperature (Tp), half‐time of crystallization (t1/2) and Avrami exponent (n) on the MWNT content and cooling rate. The MWNTs in the PCL/MWNT nanocomposites exhibit a higher nucleation activity. The crystallization activation energy (Ea) calculated with the Kissinger model is higher when a small amount of MWNTs is added, then gradually decreases; all the Ea values are higher than that of pure PCL. CONCLUSION: This paper reports for the first time the preparation of high‐performance biopolymer PCL/MWNT nanocomposites prepared by a simple melt‐compounding method. The results show that the PCL/MWNT nanocomposites can broaden the applications of PCL. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
In this work, polyamide 66 (PA66) and its composites with multiwalled carbon nanotubes (MWNTs) were melt spun into fibers at different draw ratios. PA66 fibers at high draw ratio demonstrate a 40% increase in tensile strength, 66% increase in modulus and a considerable increase in toughness. It is demonstrated that this reinforcement can be mainly attributed to high‐draw‐ratio‐induced good dispersion and orientation of MWNTs, particularly the enhanced interfacial adhesion between MWNT and matrix thanks to interfacial crystallization. Our work provides a simple but efficient method to achieve good dispersion and strong interfacial interaction through melt spinning. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
BACKGROUND: The development of carbon nanotube‐reinforced composites has been impeded by the difficult dispersion of the nanotubes in polymers and the weak interaction between the nanofiller and matrices. Efficient dispersion of carbon nanotubes is essential for the formation of a functional nanotube network in a composite matrix. RESULTS: Multiwalled carbon nanotubes (MWNTs) were incorporated into a polyimide matrix to produce MWNT/polyimide nanocomposites. To disperse well the MWNTs in the matrix and thus improve the interfacial adhesion between the nanotubes and the polymer, ‘branches’ were grafted onto the surface of the nanotubes by reacting octadecyl isocyanate with carboxylated MWNTs. The functionalized MWNTs were suspended in a precursor solution, and the dispersion was cast, followed by drying and imidization to obtain MWNT/polyimide nanocomposites. CONCLUSION: The functionalized MWNTs appear as a homogeneous dispersion in the polymer matrix. The thermal stability and the mechanical properties are greatly improved, which is attributed to the strong interactions between the functionalized MWNTs and the polyimide matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
Poly(phenylene sulfide) (PPS)/multiwalled carbon nanotubes (MWNTs) conductive composites were prepared through the simple mixing of PPS granules with MWNT powder and subsequent compression. The electrical properties as a function of MWNT loading clearly showed a low percolation threshold of about 0.22 vol % and a high critical exponent value of 3.55 for composites prepared by this method. A comparison study with composites prepared via melt mixing was also carried out, where a random dispersion of MWNTs was achieved. There existed a striplike morphology of MWNTs in the PPS matrix and MWNTs were selectively located in strips caused by compression. The effects of temperature and pressure on the conductivity of the PPS/MWNT composites as prepared via simple mixing and compression are discussed. In addition, the conductivity also showed a dependence on the flow direction of the compression, with higher conductivity in the direction parallel to the flow direction than in the direction perpendicular to the flow direction. So the relationship of the processing and morphological properties was investigated in detail. The possible conductive mechanisms of conventional melt blending and preparation via sample mixing and compression are also discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Polypropylene (PP)/multiwalled carbon nanotube (MWNT) composites were prepared with an environmentally benign processes. The surface functionalization of the MWNTs was performed with water as a solvent, and the functionalized MWNTs were mixed with PP to form composites with a melt process. The effects of the MWNTs on the mechanical and thermal properties of the composites were studied. The tensile strength and modulus of the composites increased with the amount of MWNTs. The thermal stability was also improved by the reinforced MWNTs. The MWNTs also improved the oxidative stability of the composite on UV irradiation. Although pure PP degraded almost completely after 12 h of irradiation, the composite reinforced with MWNTs retained some level of mechanical strength after UV irradiation. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Five commercially available multi-walled carbon nanotubes (MWNTs), with different characteristics, were melt mixed with polycarbonate (PC) in a twin-screw micro compounder to obtain nanocomposites containing 0.25-3.0 wt.% MWNT. The electrical properties of the composites were assessed using bulk electrical conductivity measurements, the mechanical properties of the composites were evaluated using tensile tests and dynamic mechanical analysis (DMA), and the thermal properties of the composites were investigated using differential scanning calorimetry (DSC). Electrical percolation thresholds (pcs) were observed between 0.28 wt.% and 0.60 wt.%, which are comparable with other well-dispersed melt mixed materials. Based on measurements of diameter and length distributions of unprocessed tubes it was found that nanotubes with high aspect ratios exhibited lower pcs, although one sample did show higher pc than expected (based on aspect ratio) which was attributed to poorer dispersion achieved during mixing. The stress-strain behavior of the composites is only slightly altered with CNT addition; however, the strain at break is decreased even at low loadings. DMA tests suggest the formation of a combined polymer-CNT continuous network evidenced by measurable storage moduli at temperatures above the glass transition temperature (Tg), consistent with a mild reinforcement effect. The composites showed lower glass transition temperatures than that of pure PC. Lowering of the height of the tanδ peak from DMA and reductions in the heat capacity change at the glass transition from DSC indicate that MWNTs reduced the amount of polymer material that participates in the glass transition of the composites, consistent with immobilization of polymer at the nanotube interface.  相似文献   

13.
Lingyu Li  Chaoying Ni  Benjamin Hsiao 《Polymer》2007,48(12):3452-3460
Multi-walled carbon nanotubes (MWNTs) were modified with poly(hexamethylene adipamide) (also known as Nylon 66) via a controlled polymer solution crystallization method. A “nanohybrid shish kebab” (NHSK) structure was found wherein the MWNT resembled the shish while Nylon 66 lamellar crystals formed the kebabs. These Nylon 66-functionalized MWNTs were used as precursors to prepare polymer/MWNT nanocomposites. Excellent dispersion was revealed by optical and electron microscopies. Nitric acid etching of the nanocomposites showed that MWNT formed a robust network in Nylon 66. Non-isothermal DSC results showed multiple melting peaks, which can be attributed to lamellar thickness changes upon heating. The crystallite sizes L100 and L010 of Nylon 66, determined by WAXD, decreased with increasing MWNT contents. Isothermal DSC results showed that crystallization kinetics increased first and then decreased with increasing MWNT contents in Nylon 66. This study showed that the effect of MWNTs on Nylon 66 crystallization is twofold: MWNTs provide heterogeneous nucleation sites for Nylon 66 crystallization while the tube network structure hinders large crystal growth.  相似文献   

14.
The acid modification of multiwall carbon nanotubes (MWNTs) was performed by an HNO3/H2SO4 solution. The glycidyl methacrylate (GMA) undergoing an opening‐ring was grafted onto the surface of acid‐modified MWNTs. The surface properties of MWNTs were investigated by Fourier transform infrared spectrometer (FTIR), Raman spectra, transmission electron microscopy (TEM), X‐ray diffraction, and thermogravimeric analysis. Then the MWNTs/ poly(methyl methacrylate) (PMMA) nanocomposites were prepared by in situ polymerization. The tribological and dielectric properties of nanocomposites were studied. As a result, GMA was grafted on the surface of MWNTs. The tribological and dielectric properties of MWNTs/ PMMA nanocomposites were improved as the content of the surface‐modified MWNT increased. The marked improvement in tribological and dielectric properties were attributed to the good dispersion of MWNTs that were bonded with C?C on the surface that participated in the polymerization of MMA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Shape‐memory polyurethane/multiwalled carbon nanotube (SMP–MWNT) composites with various multiwalled carbon nanotube (MWNT) contents were synthesized, and the corresponding SMP–MWNT fibers were prepared by melt spinning. The influence of the MWNT content on the spinnability, fracture morphology, thermal and mechanical properties, and shape‐memory behavior of the shape‐memory polymer was studied. The spinning ability of SMP–MWNTs decreased significantly with increasing MWNT content. When the MWNT content reached 8.0 wt %, the fibers could not be produced because of the poor rheological properties of the composites. The melt‐blending, extrusion, and melt‐spinning processes for the shape‐memory fiber (SMF), particularly at low MWNT contents, caused the nanotubes to distribute homogeneously and preferentially align along the drawing direction of the SMF. The crystallization in the SMF was promoted at low MWNT contents because it acted as a nucleation agent. At high MWNT contents, however, the crystallization was hindered because the movement of the polyurethane chains was restricted. The homogeneously distributed and aligned MWNTs preserved the SMF with high tenacity and initial modulus. The recovery ratio and recovery force were also improved because the MWNTs helped to store the internal elastic energy during stretching and fixing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
In this study, styrene‐butadiene‐styrene tri‐block copolymer/multiwalled carbon nanotubes (SBS/MWNTs) were prepared by means of a solution blending method. To enhance the compatibility between SBS and MWNTs, the SBS grafted MWNTs (SBS‐g‐MWNTs) were used to replace MWNTs. The MWNTs were chemically hydroxylated by the dissolved KOH solution with ethanol as solvent and then reacted with 3‐Aminopropyltriethoxysilane (APTES) to functionalize them with amino groups (MWNT‐NH2). The SBS‐g‐MWNTs were finally obtained by the reaction of MWNT‐NH2 and maleic anhydride grafted SBS (MAH‐g‐SBS). The SBS‐g‐MWNTs were characterized by X‐ray photoelectron spectroscopy (XPS), Fourier transform‐infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The results showed that the SBS molecules were homogeneously bonded onto the surface of the MWNTs, leading to an improvement of the mechanical and electrical properties of SBS/SBS‐g‐MWNTs composites due to the excellent interfacial adhesion and dispersion of SBS‐g‐MWNTs in SBS. A series of continuous tests were carried out to explore the electrical‐mechanical properties of the SBS/SBS‐g‐MWNTs composites. We found out that, near the percolation threshold, the well‐dispersed SBS/SBS‐g‐MWNTs composites showed good piezoresistive characteristics and small mechanical destructions for the development of little deformation under vertical pressure. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42945.  相似文献   

17.
“Bucky gels” of carbon nanotubes were successfully prepared by grinding multi‐walled carbon nanotubes (MWNTs) and ionic liquids (ILs) for several hours. A series of poly(vinylidene fluoride) (PVDF) composites with Bucky gels was obtained through simple melt compounding. The Raman spectrum showed significant interaction among the ILs, MWNTs, and PVDF. The dielectric behavior of the PVDF composites based on unmodified and IL‐modified MWNTs was studied from 40 Hz to 30 MHz. The addition of ILs significantly enhanced the dielectric property of the PVDF/IL/MWNT ternary composites, which was much higher than that of the sum of PVDF/IL and PVDF/MWNT binary composites. The SEM results revealed that both MWNTs and ILs uniformly dispersed throughout the PVDF/IL/MWNT composites because of the strong interaction between them. The DSC and XRD results showed that the addition of ILs in the composites changed the crystallinity and crystal form of the PVDF. POLYM. COMPOS., 36:94–101, 2015. © 2014 Society of Plastics Engineers  相似文献   

18.
The synergetic effect of multiwalled carbon nanotubes (MWNTs) and carbon fibers (CFs) in enhancing the electrical conductivity of nylon 6 (PA6) composites was investigated. To improve the compatibility between the fillers and the PA6 resin, we grafted γ‐aminopropyltriethoxy silane (KH‐550) onto the MWNTs and CFs after carboxyl groups were generated on their surface by chemical oxidation with nitric acid. Fourier transform infrared spectroscopy and thermogravimetric analysis proved that the KH‐550 molecules were successfully grafted onto the surface of the MWNTs and CFs. Scanning electron microscopy and optical microscopy showed that the obtained modified fillers reduced the aggregation of fillers and resulted in better dispersion and interfacial compatibility. We found that the electrical percolation threshold of the MWNT/PA6 and CF/PA6 composites occurred when the volume fraction of the fillers were 4 and 5%, respectively. The MWNT/CF hybrid‐filler system exhibited a remarkable synergetic effect on the electrically conductive networks. The MWNT/7% CF hybrid‐filler system appeared to show a second percolation when the MWNT volume fraction was above 4% and a volume resistivity reduction of two orders of magnitude compared with the MWNT/PA6 system. The mechanical properties of different types of PA6 composites with variation in the filler volume content were also studied. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40923.  相似文献   

19.
Zhong Xie  Qing Wang  Xiaoyun Liu  Zhewen Han 《Polymer》2011,52(23):5271-5276
This article reports the synthesis of poly(2,5-benzoxazole)/multiwalled carbon nanotubes (ABPBO/MWNT) composites by in situ polycondensation and their chemical and physical properties. The functional groups yielded from the surface modification of MWNTs by hydrochloric acids have been demonstrated to participate in the polymerization and thus led to the composites with homogenous dispersion of carbon nanotubes. The chemical structures and morphology of the afforded polymer composites have been fully characterized by FTIR, WAXD, UV-vis, TGA and SEM. The ABPBO/MWNT composites exhibit excellent thermal stability and greatly improved mechanical properties. The tensile modulus and tensile strength of the composites are 47% and 83%, respectively, higher than those of the polymer matrix. The dielectric constant of the composites is also significantly enhanced from 4 of the polymer matrix to 65 with the incorporation of 5 wt% MWNTs.  相似文献   

20.
Polyaniline (PANI)/multiwalled carbon nanotube (MWNT) composites with a uniform tubular structure were prepared from in situ polymerization by dissolving amino‐functionalized MWNT (a‐MWNT) in aniline monomer. For this the oxidized multiwalled nanotube was functionalized with ethylenediamine, which provided ethylenediamine functional group on the MWNT surface confirmed by Fourier‐transform infrared spectra (FT‐IR). The a‐MWNT was dissolved in aniline monomer, and the in situ polymerization of aniline in the presence of these well dispersed nanotubes yielded a novel tubular composite of carbon nanotube having an ordered uniform encapsulation of doped polyaniline. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the nanotubes were coated with a PANI layer. The thermal stability and electrical conductivity of the PANI /MWNTs composites were characterized by thermogravimetric analysis (TGA) and conventional four‐probe method respectively. Compared with pure PANI, the electrical conductivity and the decomposition temperature of the MWNTs/PANI composites increased with the enhancement of MWNT content in PANI matrix. POLYM. COMPOS., 34:1119–1125, 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号