首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrochemical behavior of oxo-bridged dinuclear ruthenium(III) complex ([(bpy)2(H2O)RuIII-O-RuIII(H2O)(bpy)2]4+) has been studied in aqueous solution (KCl 0.5 mol L−1) by both cyclic and rotating disk electrode (RDE) voltammetry in order to identify and elucidate the reaction mechanism. Modified electrode containing the oxo-bridged ruthenium complex incorporated into a cation-exchange polymeric film deposited onto platinum electrode surface was studied. Cyclic voltammetry at the modified electrode in KCl solution showed a single-electron reduction/oxidation of the couple RuIII-O-RuIII/RuIII-O-RuIV. The modified electrode exhibited electrocatalytic property toward hydrogen peroxide oxidation in KCl solution with a decrease of the overpotential of 340 mV compared with the platinum electrode. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the hydrogen peroxide oxidation. The first at low overpotential region there is no significant change in the Tafel slope (∼0.130 V dec−1) with varying peroxide concentration. The second region at higher overpotential the slope values (0.91–0.47 V dec−1) were depended on the peroxide concentration. The apparent reaction order for H2O2 varies from 0.16 to 0.50 in function of the applied potential. The apparent reaction order (at constant potential) with respect to H+ concentration of 10−5 to 10−1 mol L−1 was 0.25. A plot of the anodic current vs. the H2O2 concentration for chronoamperometry (potential fixed = +0.61 V) at the modified electrode was linear in the 1.0 × 10−5 to 2.5 × 10−4 mol L−1 concentration range.  相似文献   

2.
The amperometric bienzyme glucose biosensor utilizing horseradish peroxidase (HRP) and glucose oxidase (GOx) immobilized in poly(toluidine blue O) (PTBO) film was constructed on multi-walled carbon nanotube (MWNT) modified glassy carbon electrode. The HRP layer could be used to analyze hydrogen peroxide with toluidine blue O (TBO) mediators, while the bienzyme system (HRP + GOx) could be utilized for glucose determination. Glucose underwent biocatalytic oxidation by GOx in the presence of oxygen to yield H2O2 which was further reduced by HRP at the MWNT-modified electrode with TBO mediators. In the absence of oxygen, glucose oxidation proceeded with electron transfer between GOx and the electrode mediated by TBO moieties without H2O2 production. The bienzyme electrode offered high sensitivity for amperometric determination of glucose at low potential, displaying Michaelis-Menten kinetics. The bienzyme glucose biosensor displayed linear response from 0.1 to 1.2 mM with a sensitivity of 113 mA M−1 cm−2 at an applied potential of −0.10 V in air-saturated electrolytes.  相似文献   

3.
Combination of multi-walled carbon nanotubes, cobalt porphyrin and tungsten oxide in the film (deposited onto glassy carbon electrode substrate) produces an electrocatalytic system capable of effective reduction of oxygen in such acid medium as 0.5 mol dm−3 H2SO4.Co-existence of cobalt porphyrin and tungsten oxide, together with dispersed carbon nanotubes, leads to the enhancement effect evident from some positive shift in the oxygen reduction voltammetric potential and the significant increase of voltammetric currents (relative to those characteristic of the system free of carbon nanotubes and WO3). The multi-component electrocatalytic film has also exhibited relatively higher activity towards reduction of hydrogen peroxide. It is reasonable to expect that the reduction of oxygen is initiated at the cobalt porphyrin redox centers, and the undesirable hydrogen peroxide intermediate is further reduced at the tungsten oxide support. An important function of carbon nanotubes is to improve transport of electrons within the electrocatalytic multi-component film.  相似文献   

4.
Based on positively charged poly(diallyldimethylammonium chloride) (PDDA) layer providing nucleation sites for the growth of PB via self-assemble process, regular Prussian Blue (PB) nanocubes was obtained on the Pt electrode by simply adjusting adsorption temperatures of PDDA. Electrochemical impedance spectroscopy (EIS) was applied to study the coverage and electrical resistance of PDDA on the electrode with different adsorbed temperatures. The evolutions of PB morphology with temperature-controlled PDDA were characterized by field emission scanning electron microscope (FESEM). Investigation on the electrochemical property of the modified electrodes was also carried out using Chronoamperometry. Control of temperature could optimize the charge density distribution of PDDA on electrode and further construct the regular growth of PB crystal. At the PDDA adsorbed temperature of 30 °C, the as-fabricated PB modified electrode showed an excellent sensitivity to hydrogen peroxide response of about 1179.6 mA M−1 cm−2, a rapid response time within 2 s, and a wide linear range up to 600 μM H2O2. In addition, the sensor exhibited good reproducibility and stability.  相似文献   

5.
We have developed a polyaniline/carboxy-functionalized multiwalled carbon nanotube (PAn/MWCNTCOOH) nanocomposite by blending the emeraldine base form of polyaniline (PAn) and carboxy-functionalized multiwalled carbon nanotubes (MWCNT) in dried dimethyl sulfoxide (DMSO) at room temperature. The conductivity of the resulting PAn/MWCNTCOOH was 3.6 × 10−3 S cm−1, mainly as a result of the protonation of the PAn with the carboxyl group and the radical cations of the MWCNT fragments. Horseradish peroxidase (HRP) was immobilized within the PAn/MWCNTCOOH nanocomposite modified Au (PAn/MWCNTCOOH/Au) electrode to form HRP/PAn/MWCNTCOOH/Au for use as a hydrogen peroxide (H2O2) sensor. The adsorption between the negatively charged PAn/MWCNTCOOH nanocomposite and the positively charged HRP resulted in a very good sensitivity to H2O2 and an increased electrochemically catalytical current during cyclic voltammetry. The HRP/PAn/MWCNTCOOH/Au electrode exhibited a broad linear response range for H2O2 concentrations (86 μM–10 mM). This sensor exhibited good sensitivity (194.9 μA mM−1 cm−2), a fast response time (2.9 s), and good reproducibility and stability at an applied potential of −0.35 V. The construction of the enzymatic sensor demonstrated the potential application of PAn/MWCNTCOOH nanocomposites for the detection of H2O2 with high performance and excellent stability.  相似文献   

6.
A new amperometric glucose biosensor has been developed based on platinum (Pt) nanoparticles/polymerized ionic liquid-carbon nanotubes (CNTs) nanocomposites (PtNPs/PIL-CNTs). The CNTs was functionalized with polymerized ionic liquid (PIL) through directly polymerization of the ionic liquid, 1-vinyl-3-ethylimidazolium tetrafluoroborate ([VEIM]BF4), on carbon nanotubes and then used as the support for the highly dispersed Pt nanoparticles. The electrochemical performance of the PtNPs/PIL-CNTs modified glassy carbon (PtNPs/PIL-CNTs/GC) electrode has been investigated by typical electrochemical methods. The PtNPs/PIL-CNTs/GC electrode shows high electrocatalytic activity towards the oxidation of hydrogen peroxide. Taking glucose oxidase (GOD) as the model, the resulting amperometric glucose biosensor shows good analytical characteristics, such as a high sensitivity (28.28 μA mM−1 cm−2), wide linear range (up to 12 mM) and low detection limit (10 μM).  相似文献   

7.
Graphene nanosheets-tungsten oxides (tungsten oxide/tungsten oxide hydrate mixture) (GNS-W) composite was successfully synthesized using a facile approach. WO3/WO3·H2O mixtures were deposited on the graphene nanosheets (GNS) to form the GNS-W composite. The GNS-W composite was characterized by X-ray diffraction (XRD), Raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The as-prepared GNS-W composite was directly fabricated into a supercapacitor electrode for potential energy storage application, and electrochemically tested by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The GNS-W composite electrode exhibits a better electrochemical performance than that of the WO3/WO3·H2O mixtures electrode. A high specific capacitance of about 143.6 F g−1 at a current density of 0.1 A g−1 for the GNS-W composite delivers significant improvement than that for the WO3/WO3·H2O mixtures and GNS electrodes. The impedance studies also suggest that the GNS-W composite electrode shows the lower resistance and high conductivity due to the good interaction between the graphene nanosheets and the WO3/WO3·H2O mixtures. The good electrochemical performance for the GNS-W composite may be attributed to the interaction between the WO3/WO3·H2O mixtures and the edges of graphene nanosheets, which increases the ion diffusion rate as well as the conductivity.  相似文献   

8.
Bromine (Br)-adatom (Br(ads)) was in situ fabricated onto polycrystalline gold (Au (poly)) electrode in Br-containing alkaline media. The surface coverage of Br(ads) (ΓBr) varied only in the submonolayer coverage within the investigated potential window under potentiodynamic condition because of the coadsorption of hydroxyl ion (OH) in alkaline media. The in situ fabricated Br(ads)-submonolayer-coated Au (poly) electrode was successfully used for the electrochemical oxidation of hydrogen peroxide (H2O2). About five times higher oxidation current was achieved at the modified electrode as compared with the bare electrode. The enhancement of the electrode activity towards the electrochemical oxidation of H2O2 was explained based on the enhanced electrostatic attraction between the anionic HO2 molecules and Br(ads)-adlayer-induced positively polarized Au (poly) electrode surface.  相似文献   

9.
A novel graphene oxide (GO)/Prussian blue (PB) hybrid film was constructed by electropolymerizing Prussian blue onto the GO modified glassy carbon electrode, and its electrochemical behaviors were studied. Raman spectra were used to investigate the successful formation of the GO/PB hybrid film. Electrochemical experiments showed that the graphene oxide greatly enhanced electrochemical reactivity of the PB. Moreover, a much higher Prussian blue (PB) loading (6.388 × 10−8 mol cm−2) is obtained as compared to the bare glass carbon surface (3.204 × 10−9 mol cm−2). The GO/PB hybrid film modified electrode was used for the sensitive detection of hydrogen peroxide. The sensor exhibited a wide linearity range from 5.0 × 10−6 to 1.2 × 10−3 M with a detection limit of 1.22 × 10−7 M (S/N = 3), high sensitivity of 408.7 μA mM−1 cm−2 and good reproducibility. Furthermore, with glucose oxidase (GOD) as a model, the GO/PB/GOD/chitosan composite-modified electrode was also constructed.The resulting biosensor exhibited good amperometric response to glucose with linear range from 0.1 to 13.5 mM at 0.1 V, good reproducibility and detection limit of 3.43 × 10−7 M (S/N = 3). In addition, the biosensor presented high selectivity and long-term stability. Therefore, the PB/GO hybrid films-based modified electrode may hold great promise for electrochemical sensing and biosensing applications.  相似文献   

10.
Electrochromic properties of electrochemically deposited and etched (EDE) WO3−x films have been investigated using voltammetry and nanogravimetry to elucidate the amount of residual stress associated with lattice polarization and deformation in WO3−x nanoparticles. The cathodic WO3−x deposition from pertungstic acid solution and unusual properties of the cathodic electroetching of the oxide in tetraethyl ammonium chloride solution are reported and elucidated on the basis of Electrochemical Quartz Crystal Nanogravimetry (EQCN) measurements. The stress enhanced resonant frequency shift was observed upon WO3−x film coloration. However, the stress enhancement appeared to be much lower (up to 4-6 times) than that measured for films synthesized by other methods. The stress reduction in WO3−x films under study has been attributed to the stress relaxing propensity of EDE film to suppress the compressive stress wave. A considerable isotopic effect has been observed in nanogravimetry of the H+ and D+ ion intercalation into WO3−x films. We have found that the isotopic effect is primarily due to the true mass loading difference between hydrogen and deuterium ions, for the same concentration of color centers (2.65 × 1021 cm−3), since EQCN frequency shifts associated with stress in the film for H+ and D+ are very close to each other.  相似文献   

11.
A pyrocatechol violet (PCV) modified carbon ceramic electrode (CCE) prepared by sol-gel technique was reported for the first time in this paper. By immersing the CCE in aqueous solution of PCV for only a short time, a thin film of PCV was rapidly formed on the surface of the electrode because of strong adsorption of PCV. The resulting modified electrode exhibit a well-defined redox couple attributed to reduction and oxidation of quinine-hydroquinone functionalities. The PCV-modified CCE exhibited catalytic activity toward the electro-reduction of hydrogen peroxide, with the sensitivity of 11.2 nA μM−1 and the response time was less than 3 s. In addition, the PCV-modified CCE exhibited a distinct advantage of simple preparation, surface renewal, good stability and reproducibility.  相似文献   

12.
A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20–100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1–12). The surface coverages and heterogeneous electron transfer rate constants (ks) of immobilized Mn-complex were approximately 1.58 × 10−10 mole cm−2 and 48.84 s−1. The modified electrode showed excellent electrocatalytic activity toward H2O2 reduction. Detection limit, sensitivity, linear concentration range and kcat for H2O2 were, 0.2 μM and 692 nA μM−1 cm−2, 1 μM to 1.5 mM and 7.96(±0.2) × 103 M−1 s−1, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.  相似文献   

13.
A new biosensor for the voltammetric detection of hydrogen peroxide was developed based on immobilization of catalase on a clinoptilolite modified carbon paste electrode using bovine serum albumin and glutaraldehyde. The biosensor response was evaluated according to electrode composition, reaction time, solution pH and temperature. The voltammetric signals were linearly in proportion to H2O2 concentration in the range 5.0 × 10−6–1.0 × 10−3 M with a correlation coefficient of 0.9975. The detection limit is 8.0 × 10−7 M and the relative standard deviation for 4.0 × 10−4 M hydrogen peroxide was 1.83% (= 6). The biosensor exhibited high sensitivity, and it was determined that it could be used for more than 2 months. In addition, the biosensor was successfully applied for the determination of hydrogen peroxide in milk samples.  相似文献   

14.
The passivation and pitting corrosion behaviour of a zinc electrode in aerated neutral sodium nitrate solutions was investigated by cyclic voltammetry and chronopotentiometry techniques, complemented by ex situ scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) examinations of the electrode surface. Measurements were conducted under different experimental conditions. The potentiodynamic anodic polarization curves do not exhibit active dissolution region due to spontaneous passivation. The passivity is due to the presence of thin film of ZnO on the anode surface. The passive region is followed by pitting corrosion as a result of breakdown of the passive film. SEM images confirmed the existence of pits on the electrode surface. The breakdown potential decreases with an increase in NO3 concentration and temperature, but increases with increasing potential scan rate. Addition of SO42− ions to the nitrate solution accelerates pitting corrosion, while addition of WO42− and MoO42− ions inhibits pitting corrosion. The chronopotentiometry measurements show that the incubation time for pitting initiation decreases with increasing NO3 concentration, temperature and applied anodic current density. Addition of SO42− ions decreases the rate of passive film growth and the incubation time, while the reverse changes produced by addition of either WO42− or MoO42− ions.  相似文献   

15.
Cobalt ferrite nanoparticles (CoxFe3−xO4) and chitosan (CS) film were used to immobilize/adsorb hemoglobin (Hb) to create a protein electrode to study the direct electron transfer between the redox centers of the proteins and the electrode. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the CoxFe3−xO4 particles were nanoscale in size and formed an ordered layered structure. The native structure of the immobilized Hb was preserved as indicated by Fourier-transform infrared (FTIR) and UV–visible (UV–vis) spectroscopy. The Hb-CoxFe3−xO4–CS modified electrode showed a pair of well-defined and quasi-reversible cyclic voltammetric peaks at −0.373 V (vs. SCE) and exhibited appreciable electrocatalytic activity for the reduction of H2O2. The catalysis currents increased linearly with H2O2 concentration in a wide range of 5.0 × 10−8 to 1.0 × 10−3 mol L−1 with a detection limit of 1.0 × 10−8 mol L−1 (S/N = 3) and had long-term stability. Finally, the proposed method was applied to investigate the coexistence of hydrogen peroxide with the interfering substances. Experimental results showed that the ascorbic acid, glucose, l-cysteine, uric acid, and dopamine at corresponding concentrations did not influence the detection of H2O2.  相似文献   

16.
Se/Ru nanoparticles - a potent non-platinum catalyst towards oxygen reduction reaction - were modified by hydrated WO3 and investigated using the rotating disk/ring electrode methods and by synchrotron X-ray photoelectron spectroscopy. The modification resulted in an enhanced catalytic activity towards oxygen reduction reaction (ORR). Our data indicate that the oxygen reduction current starts ca. 70 mV more positive and formation of undesirable hydrogen peroxide has significantly decreased following the modification of Se/Ru with WO3. X-ray photoelectron spectroscopy reveals that WO3 interacts electronically with Se/Ru as the W 4f and Se 3d line-shapes change. We therefore conclude that the electronic interactions between Se/Ru and WO3 are primarily responsible for the increase in activity and selectivity of the WO3-modified Se/Ru towards ORR.  相似文献   

17.
This work demonstrates that iron-enriched natural zeolitic volcanic tuff (Paglisa deposit, Cluj county, Transilvania, Romania) resulting from a previous use as adsorbent in wastewater treatment can be recycled into effective electrode modifier applied to the electrocatalytic detection of hydrogen peroxide. After physico-chemical characterization of tuff samples using various techniques such as chemical analysis, X-ray diffraction, scanning electron microscopy, infrared spectroscopy, BET analysis and X-ray photoelectron spectroscopy, the electrochemical response of the iron-enriched zeolites was studied on the basis of solid carbon paste electrodes modified with these samples. The results indicate that iron centers in the zeolite are electroactive and that they act as electrocatalysts in the voltammetric and amperometric detection of H2O2. Best performance was achieved in phosphate buffer at pH 7, showing a sensitivity of 0.57 mA M−1 cm−2, a detection limit down to 60 μM, and a linear domain up to 100 mM H2O2.  相似文献   

18.
A novel amperometric biosensor for the detection of hydrogen peroxide (H2O2) was prepared by immobilizing horseradish peroxidase (HRP) on highly dense silver nanowire (Ag-NW) film. The modified electrode was characterized using UV–Vis spectroscopy, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The electrochemical performances of the electrode were studied by cyclic voltammetry and chronoamperometry. The HRPs immobilized on the surface of Ag-NWs exhibited an excellent electrocatalytic response toward reduction of H2O2. The resulting Ag-NW modified sensor showed a sensitivity of ~2.55 μA μM−1 (correlation coefficient r = 0.9969) with a linear range of 4.8 nM–0.31 μM. Its detection limit was 1.2 nM with a signal-to-noise ratio of 3. The Michaelis–Menten constant KMapp and the maximum current density I max of the modified electrode were 0.0071 mM and 8.475 μA, respectively. The preparation process of the proposed biosensor was convenient, and the resulting biosensor showed high sensitivity, low detection limit and good stability.  相似文献   

19.
Thin nanoporous anodic alumina films, of low aspect ratio (1:1), with two distinctive pore sizes and morphologies were prepared by two-step constant-current anodising of aluminium layers on SiO2/Si substrates in 0.4 mol dm−3 tartaric (TA) and malonic acid (MA) electrolytes and then modified by open-circuit dissolution. The anodic films were employed as a support material for sputtering-deposition of thin WO3 layers in view of exploiting their gas sensing properties. The films and deposits were characterized by scanning electron microscopy, X-ray diffraction and electric resistance measurements at fixed temperatures in the range of 100-300 °C upon NH3 and CO gas exposures. Test sensors prepared from the annealed and stabilized alumina-supported WO3 active layers were insensitive to CO but showed considerably enhanced responses to NH3 at 300 °C, the sensitivity depending upon the anodic film nature, the pore size and the surface morphology. The increased sensor sensitivity is due to the substantially enlarged film surface area of the TA-supported WO3 films and the nanostructured, camomile-like morphology of the MA-supported WO3 films. Sensing mechanisms in the alumina-supported WO3 active layers are discussed.  相似文献   

20.
A CuGeO3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of l-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 × 10−6 to 1 × 10−3 mol L−1, which make it possible to sensitive detection of cysteine with the CuGeO3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号