首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrocodeposition of alumina particles with copper and nickel from acidic electrolytes has been investigated using different deposition techniques. Compared to direct current (DC) deposition, both pulse plating (PP) and pulse-reverse plating (PRP) facilitated higher amounts of particle incorporation. With conventional DC plating the maximum alumina incorporation is ∼1.5 wt% in a nickel and ∼3.5 wt% in a copper matrix. However, the implementation of rectangular current pulses can give considerably higher particle contents in the metal layer. A maximum incorporation of 5.6 wt% Al2O3 in a copper matrix was obtained by PP at a peak current of 10 A dm−2, a duty cycle of 10% and a pulse frequency of 8 Hz. In general, low duty cycles and high pulse frequencies lead to an enhanced particle codeposition. The microstructure and the hardness of both pure metal films and nanocomposite coatings showed only a weak dependence on the PP and PRP conditions.  相似文献   

2.
The electrochemical codeposition of polystyrene particles and zinc on a rotating cylinder electrode was investigated. Rheological measurements indicate strong aggregation of the PS particles in the zinc deposition electrolyte. Addition of cetylpyridinium chloride, a cationic surfactant, prevents aggregation and enhances polystyrene codeposition. Other surfactants also increase suspension stability, but diminish polystyrene codeposition, irrespective of their charge. Hence, the surfactant charge does not affect polystyrene codeposition. The variation of polystyrene incorporation with the amount of suspended polystyrene, current density and electrode rotation speed signifies that polystyrene codeposition with zinc is determined by the competition between particle removal forces and particle adhesion forces at the cathode surface. The effect of the surfactants can be related to changes in surface roughness of zinc due to surfactant adsorbed on the electrode. Cetylpyridinium chloride behaves differently from the other surfactants, because it is reduced at the cathode.  相似文献   

3.
Polymer–particle interactions can cause particle flocculation and phase separation problems in waterborne coatings. The problems can be the result of interactions that are either too weak or too strong. It is known by empirical work that addition of surfactants can minimize these problems. In this study, the authors have investigated how different types of surfactants influence the polymer–particle interactions. Both hydrophobic and hydrophilic particles were included in the study, and nonionic, anionic, and cationic surfactants were used. A simple model is suggested that can be used to predict the surfactant concentration needed to stabilize the system. The model considers the cmc (critical micelle concentration) of the surfactant, the adsorption to the polymer, and the adsorption to the particles.  相似文献   

4.
The current efficiency of chromium deposition was investigated under conditions of periodic current reversal. It has been demonstrated that the relationship between the anodic and the cathodic charges, Qa/Qc, has a strong influence on the current efficiency and the structure of the deposit. A plausible model for the crystallization mechanism during periodic current reversal has been suggested. According to the model, an advantageous chromium structure is maintained during the deposition process because interstitial hydrogen in the chromium lattice is oxidized during the anodic period.Notation F Faraday constant - i a anodic current density - i c cathodic current density - m a mass of dissolved chromium - m c mass of deposited chromium - M molecular weight of chromium - Qa anodic charge - Qc cathodic charge - T cycle time (T c + T a) - T a anodic pulse duration - T c cathodic pulse duration Greek symbols current efficiency - a current efficiency of chromium disolution in anodic period - c current efficiency of chromium deposition in cathodic period - max maximum current efficiency  相似文献   

5.
A parallel plate flow cell was designed for the study of particle codeposition in metal electrodeposition. Particle deposition was visualized and recorded with a microscope/video assembly. The effects of two surfactants (anionic sodium dodecyl sulphate and cationic cetyl trimethyl ammonium bromide) on the adhesion of anionic polystyrene particles to a nickel substrate were examined. The deposition rate in laminar flow was measured as a function of the main parameters, that is, electrode potential, Ni(ii) concentration, surfactant concentration and pH. The hydrodynamic drag force applies uniformly and tangentially to the collector under laminar flow in contrast with rotating disc or impinging jet cells. No deposition is observed unless specific attractive forces carry the particles through the boundary layer. Particle attachment takes place over a limited range of surfactant/Ni(II) composition and correlates with the formation of a surface film visible under the microscope. Results discussed are based on the adsorption of SDS and CTAB on to both the electrode and the particles, an adsorption which significantly alters the interaction potential at a short distance. The cell gives interesting evidence for the occurrence of specific interactions in electrolytic codeposition. It also proves useful for observing other phenomena, such as hydrogen bubbling.  相似文献   

6.
This research evaluated middle-phase microemulsion formation by varying the mole ratio of anionic and cationic surfactants in mixtures with four different oils (trichloroethylene, n-hexane, limonene, and n-hexadecane). Mixtures of a double-tailed anionic surfactant (sodium dihexyl sulfosuccinate, SDHS) and an unbalanced-tail (i.e., doubletailed with tails of different length) cationic surfactant (benzethonium chloride, BCl) were able to form microemulsions without alcohol addition. The amount of NaCl required to form the middle-phase microemulsion decreased dramatically as an equimolar anionic-cationic surfactant mixture was approached. Although the mixture of anionic and cationic surfactants demonstrated a higher critical microemulsion concentration (cμc) compared to the anionic surfactant alone, the Winsor Type IV single-phase microemulsion started at lower surfactant concentrations for the anionic-cationic mixture than for the anionic surfactant alone. Under optimum middlephase microemulsion conditions, mixed anionic-cationic surfactant systems solubilized more oil than the anionic surfactant alone. Pretreatment detergency studies were conducted to test the capacity of these mixed surfactant systems to remove oil form fabrics. It was found that anionic-rich mixed surfactant formulations yielded the largest oil removal, followed by cationic-rich systems.  相似文献   

7.
This research evaluates the adsorption of anionic and cationic surfactant mixtures on charged metal oxide surfaces (i.e., alumina and silica). For an anionic-rich surfactant mixture below the CMC, the adsorption of anionic surfactant was found to substantially increase with the addition of low mole fractions of cationic surfactant. Two anionic surfactants (sodium dodecyl sulfate and sodium dihexyl sulfosuccinate) and two cationic surfactants (dodecyl pyridinium chloride and benzethonium chloride) were studied to evaluate the effect of surfactant tail branching. While cationic surfactants were observed to co-adsorb with anionic surfactants onto positively charged surfaces, the plateau level of anionic surfactant adsorption (i.e., at or above the CMC) did not change significantly for anionic–cationic surfactant mixtures. At the same time, the adsorption of anionic surfactants onto alumina was dramatically reduced when present in cationic-rich micelles and the adsorption of cationic surfactants on silica was substantially reduced in the presence of anionic-rich micelles. This demonstrates that mixed micelle formation can effectively reduce the activity of the highly adsorbing surfactant and thus inhibit the adsorption of the surfactant, especially when the highly adsorbing surfactant is present at a low mole fraction in the mixed surfactant system. Thus surfactant adsorption can be either enhanced or inhibited using mixed anionic–cationic surfactant systems by varying the concentration and composition.
D. A. SabatiniEmail:
  相似文献   

8.
Synthesis and characterization of polypyrrole/TiO2 composites on mild steel   总被引:1,自引:0,他引:1  
The anodic codeposition of polypyrrole and TiO2 on AISI 1010 steel substrates in oxalic acid medium was studied from the standpoint of their use as protective coatings against corrosion. The influence of surface treatment, pH, stirring and current density (j) on the current efficiency () and pigment concentration incorporated in the polymer (C c) were investigated. The highest C c values (7.5%) were found at j = 5 mA cm–2, pH 4 and stirred baths. The composites were characterized by adherence and surface roughness tests, XPS, EDX, SEM, FTIR and cyclic voltammetry.  相似文献   

9.
The surfactant structure–performance relationship and application properties in enhanced oil recovery (EOR) for binary mixtures of anionic and cationic surfactants are presented and discussed. A polyoxyethylene ether carboxylate anionic surfactant was blended with a quaternary ammonium chloride cationic surfactant and tested for a high-temperature, low-salinity, and high-hardness condition as found in an oil reservoir. These mixtures were tailored by phase behavior tests to form optimal microemulsions with normal octane (n-C8) and crude oil having an API gravity of 48.05°. The ethoxy number of the polyoxyethylene carboxylate anionic surfactant and the chain length of the cationic surfactant were tuned to find an optimal surfactant blend. Interfacial tensions with n-C8 and with crude oil were measured. Synergism between anionic and cationic surfactants was indicated by surface tension measurement, CMC determination, calculation of surface excess concentrations and area per molecule of individual surfactants and their mixtures. Molecular interactions of anionic and cationic surfactants in mixed monolayers and aggregates were calculated by using regular solution theory to find molecular interaction parameters β σ and β M . Morphologies of surfactant solutions were studied by cryogenic TEM. The use of binary mixtures of anionic/cationic surfactants significantly broadens the scope of application for conventional chemical EOR methods.  相似文献   

10.
A matrix of coating variables, nonassociative versus associative thickeners, different latex median particle sizes, individual surfactants and colorants [carbon black (CB), red, and yellow pigments], was examined for their influence on variances in coatings rheology and color development. Within the different coating groups, the variable of interest in this study was the surfactant added to the colorant formulation. In all three colorant formulations, sodium dodecyl sulfate (an anionic surfactant) provided poorer color development (CD) than in applied formulations containing an equivalent nonylphenol oxyethylene (EO) surfactant. In CB formulations, nonionic surfactants with higher EO content provide improved color development at low (2 mM) concentrations, but near equality in CD is achieved with low EO surfactants at higher concentrations. In contrast to CB formulations, red and yellow colorants exhibit good color development with high EO content nonionic surfactants only at low nonionic surfactants concentrations. This variance appears to be related to the interactions of surfactants with inorganic pigments (talc and laponite) in the colorant formulation. The coating’s rheology is related to latex, thickeners, and surfactant components of the paint, as has been noted in previous studies, but not to the nature of the color pigment. The viscosity of the hydroxyethyl cellulose (nonassociative type) and HEUR (associative type) thickened paint decreased with colorant addition due to dilution effects. There were no unusual deviations with the NP(EO)x surfactants, except when a large hydrophobe nonionic surfactant [e.g., C18H37(EO)100] is added. In HEC thickened coatings, the viscosity decreases when C18H37-(EO)100 is in the colorant due to that surfactant inhibiting depletion flocculation. In the C18H37(EO)100 coatings containing the HEUR thickener, significant increases in viscosity were observed, above the dilution values observed with the colorant addition. This is related to the viscosity maximum in the low concentration of HEUR with the C18H37(EO)100 surfactant. Color development is independent of the viscosity profile of the coating. Presented in part at the 81st Annual Meeting of the Federation of Societies for Coatings Technology, November 13–14, 2003 in Philadelphia, PA.  相似文献   

11.
Nanocrystalline and amorphous Ni–W coatings containing Al2O3 nanoparticles were electrodeposited from three different ammoniacal citrate baths by direct current (DC) method. The effects of nanoparticles on compositional, structural and morphological features of Ni–W coatings were investigated. The effects of bath chemical composition and current density on codeposition behavior of nanoparticles were also studied. Guglielmi model for particle deposition was applied to identify the kinetics of particle deposition. The presence of nanoparticles may affect on coating grain size, tungsten content and the rate of metal deposition. In addition, nanoparticles can result in more compact coatings with fewer defects. The extent of these effects depends on bath chemical composition and may be influenced by the synergistic effect of Ni on deposition of W. It was also found that the kinetics of particle deposition and the effect of current density on codeposition behavior of nanoparticles are highly dependent on bath chemical composition.  相似文献   

12.
ABSTRACT

In this study, PVB/vermiculite nanocomposites were synthesised by in-situ reaction method using pristine vermiculite and its organoclays. Normally, organoclays for nanocomposites are prepared with cationic surfactants due to the charge distribution of clay minerals. Vermiculite has negative charges on the surfaces. Hence, cationic surfactant can easily penetrate to the interlayer spaces and extent them to the very high orders. However, the extension of interlayer spaces of vermiculite can also be satisfied with anionic surfactants in fact more than cationic surfactant does because of the exclusive incorporation of surfactants with vermiculite. Two different kinds, cationic and anionic, organoclays of vermiculite were synthesised to prepare PVB nanocomposites. The results revealed that exfoliated PVB/vermiculite nanocomposites achieved with anionic-organoclay, in contrast to common rules about clay-polymer nanocomposites. Exfoliation of anionic organoclays in PVB resulted in reduction of the total crystal structure of the clay minerals in the PVB which was also made the nanocomposites more elastic.  相似文献   

13.
Polyacrylamide gel was synthesized to study interaction between surfactant and particle hydrogel. Surfactants used in this study include cationic surfactants, n-dodecylpyridinium chloride, (1-hexadecyl) pyridinium bromide; anionic surfactants, sodium salt of dodecylbenzene sulfonic acid, sodium 4-n-octyl benzene sulfonate and sodium branched alcohol propoxylate sulfate; and nonionic surfactants, Igepal® CO-530, Tergitol® NP-10 and Neodol® 25-12. It has been found that, after swelling of the dry particles, surfactant concentration shows a substantial increase. Meanwhile, dynamic modulus (G′ and G") of the gels shows a significant decrease in the surfactant solutions. Based on the experimental results, a mechanism has been proposed to elucidate the reduction of the gel dynamic modulus. Furthermore, this mechanism was discussed through surfactant critical packing parameters (CPP) at the interface of the hydrogel particle and surfactant aqueous solution, and confirmed by recovery of the gel dynamic modulus after removal of the surfactant from the hydrogels.  相似文献   

14.
Synergism in mixed micelle formation and surface tension reduction efficiency and the ternary phase behavior of anionic surfactant (alcohol polyoxyethylene ether acetate containing 10 ethylene oxide group and a fatty chain of C16–18) with cationic surfactants (dodecyldimethylbenzyl ammonium chloride and lauryltrimethyl ammonium chloride) were investigated. Surface tension of the systems at different molar ratios was studied in detail and the interaction parameters of each system were calculated. The results show that both systems have lower values of critical micelle concentration (CMC) and γcmc than individual surfactants especially at equal ratio between cationic and anionic surfactants. Both systems present synergism in mixed micelle formation and surface tension reduction efficiency. The ternary phase behavior of the two systems was investigated using a polarized microscope. The micellar phase and lamellar phase were observed in both systems and the coexisting phase was only observed in the dodecyldimethylbenzyl ammonium chloride system.  相似文献   

15.
Highly monodisperse polystyrene nanoparticles with mean diameters of less than 100 nm are synthesized via aqueous emulsion polymerization using an amphoteric initiator (VA-057) in the presence of sub-millimolar concentrations of anionic surfactant. Since the net charge on the initiator is almost zero at neutral pH, the resultant latex particle size is mainly determined by surfactant adsorption. Polymerizations were performed in the presence of a range of anionic surfactants with differing critical micelle concentrations (CMC) by varying the concentrations of surfactant, initiator and monomer, and also the ionic strength. Sodium dodecyl benzene sulfonate (SDBS), sodium hexadecyl sulfate (SHS), and sodium octadecyl sulfate (SOS) have relatively low CMCs and so enable formation of highly monodisperse nanoparticles at relatively low (sub-millimolar) surfactant concentrations, CS (i.e. below the CMC in each case). Empirically, it was found that the particle number, Np, and coefficient of variation of the particle size, CV, were strongly dependent on the CS/CMC ratio: Np increased almost in proportion with the square of this ratio, while the CV exhibited a minimum at approximately CS/CMC = 0.20. Higher ionic strength reduced the particle size, which is consistent with the above relationship because the addition of salt lowers the CMCs of ionic surfactants. Polymer latex particles produced using such formulations form highly regular, close-packed colloidal arrays.  相似文献   

16.
Dispersion polymerization of N-vinyl caprolactam (NVCL) was carried out in supercritical carbon dioxide (scCO2) using three surfactants. The polymerization was performed in the presence of fluorine-based poly(heptadecafluorodecyl acrylate) (PHDFDA), poly(heptadecafluorodecyl methacrylate) (PHDFDMA) or siloxane-based PDMS-g-pyrrolidonecarboxylic acid (Monasil PCA) as a surfactant. FE-SEM and image analyzer were used to characterize particle morphology, size, and size distribution. When fluorine-based surfactants were used, spherical PVCL particles were obtained. Using Monasil PCA resulted in agglomerated and irregular polymer particles. The effect of concentration of surfactants, initiators, and monomer, and reaction pressure on the particle morphology, average particle size and particle size distribution (PSD) was also investigated with fluorine-based surfactant, PHDFDA or PHDFDMA.  相似文献   

17.
The surface properties of binary mixtures of anionic sodium methyl ester ??-sulfo alkylate (C m MES) and cationic alkyl trimethylammonium bromide (C n TAB) of different carbon chain length have been studied in the present work. The critical micelle concentration (CMC) that was obtained from the plots of surface tension (??) versus concentration showed that mixed surfactants have CMC values that were about 10 times lower than their single components. The large negative values for both interaction parameters suggest the existence of strong synergism between the oppositely charged surfactant molecules. The effect of hydrocarbon chain length of either surfactant was also compared and results showed that the effect of cationic surfactant chain length dominated that of the anionic surfactants. It was also discovered that certain mixed surfactant combinations behave differently from the expected trend.  相似文献   

18.
Aqueous solutions of surfactants—cationic: tetradecyltrimethylammonium bromide (C14TABr); anionic: sodium dodecyl sulfate (SDS); and nonionic: polyoxyethylene t-octylphenol (trade name Triton X-102, also called OPE-8)— in the presence of three hydrotropes, viz., sodium xylene sulfonate, sodium p-toluene sulfonate, and sodium chlorobenzene sulfonate, were examined by measuring surface tension, viscosity, and cloud points for the nonionic surfactant. The results show a marked decrease in the critical micelle concentration with increase in hydrotrope concentration for C14TABr, a marginal decrease for SDS, and very little change for OPE-8 up to 0.1 M hydrotrope. The viscosity of cationic surfactant solutions showed a remarkable increase in the presence of trace amounts of hydrotropes (up to 15 mM). In contrast, the SDS solution showed only a slight increase in viscosity at high hydrotrope concentration (150 mM), and the viscosity of the OPE-8 solution remained constant. The cloud point of OPE-8 increased in the presence of hydrotropes, unlike its behavior with the simple salt NaCl. The strong dependence of the solution behavior of cationic surfactants on the presence of hydrotropes is discussed in terms of electrostatic interaction.  相似文献   

19.
For biomedical application in the field of artificial hip joints diamond-like carbon (DLC) coatings have been widely studied due to their tribological properties. The wear particles as the main factor limiting the life expectancy of hip joints have attracted more and more interest, not only the number of them, but also the distribution of their size. In this study we have deposited DLC coatings on stainless steel (P2000) by a vacuum arc adjustable from anodic to cathodic operation mode, with the anode–cathode diameter ratio of da/dc = 3/1 at a DC bias of − 250 V to − 1000 V. To improve the adhesion of the DLC coating on P2000, titanium as a metallic interlayer was deposited by cathodic vacuum arc evaporation. The internal structure of the coating was investigated by the visible Raman spectroscopy with the four-Gaussian curve fitting method. Comparing the results with the previous work (coatings deposited with da/dc = 1/1), it was found that the anode–cathode diameter ratio has an effect on the structure (e.g. ID/IG) as well as the wear particle size distribution. It was shown that the maximum of the frequency distribution e.g. at − 1000 V bias can be shifted to below 1 μm with increasing da/dc.  相似文献   

20.
The cathodic polarization, cathodic current efficiency of codeposition, composition and structure of Co–Cu alloy as a function of bath composition, current density and temperature were studied. Electrodeposition was carried out from solutions containing CuSO4 · 5H2O, CoSO4 · 7H2O, Na2SO4 and NH2CH2COOH. The cathodic current efficiency of codeposition (CCE) was high and it increased with increasing temperature and Cu2+ content in the bath, but it decreased with current density. The codeposition of Co–Cu alloys from these baths can be classified as regular. The Co content of the deposit increased with Co2+ content and current density and decreased with glycine concentration and temperature. The structure of the deposited alloys was characterized by anodic stripping and X-ray diffraction techniques. The data showed that the deposited alloys consisted of a single solid solution phase with a face-centred cubic (f.c.c.) structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号