首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts   总被引:1,自引:0,他引:1  
Mesocarbon microbeads (MCMB) as Pt catalyst supports were characterized by X-ray electron diffraction, thermal field emission scanning electron microscope and electrochemical analysis. MCMB with different pretreatment were used as the catalyst supports. The XRD patterns show the existence of Pt and the micrograph of SEM shows Pt is absorbed uniformly on the surface of MCMB particles and the platinum grain size is ca. 3-5 nm. The effect of the pretreatment of the support on the catalyst performance of methanol electrooxidation was studied. Electrochemical analysis shows that MCMB are excellent candidates to be used as the support of catalyst for methanol electrochemical oxidation. The catalyst with MCMB boiled in KOH for 1 h as support exhibits a high catalytic activity during the electrooxidation of methanol.  相似文献   

2.
徐衍  李洲鹏  刘宾虹  秦海英 《浙江化工》2010,41(5):20-22,16
综述了近几年来关于最具商业前景的直接二甲醚燃料电池的研究成果,文中主要探讨了新型阳极催化剂的开发,膜电极结构对电池性能的优化以及操作条件对电池性能的影响。建议在深入对催化剂、电池结构和操作条件的研究基础上,采用碱性电解质饱和二甲醚为燃料和双氧水替代氧气为氧化剂等方法进一步提高电池性能。  相似文献   

3.
A Pt/C catalyst modified by the Keggin-structure molybdovanadophosphoric acid (PMV) is prepared by cyclic voltammetry and the modified Pt/C catalyst is studied for methanol electrooxidation. The results show that the PMV modified Pt/C catalyst has increased the electron transfer coefficient of the rate-determining step and diminished the adsorption of CO on Pt/C catalysts. Significant improvements in the catalytic activity and stability for methanol electrooxidation are observed, and it indicates that the PMV combined with Pt/C catalyst can be considered as a good electrocatalyst material for potential application in direct methanol fuel cells.  相似文献   

4.
吴锋  刘延红  吴川 《过程工程学报》2009,9(6):1198-1203
以乙二醇(EG)兼作溶剂和稳定剂,分别通过NaBH4和EG还原法制备了高度细化与分散的Pt/C催化剂,对其形貌、组成、结构和电化学活性比表面等进行了表征比较,并测试了它们对甲醇与乙醇电催化氧化的活性. 结果表明,2种催化剂中,Pt均为面心立方结构,粒径小且分布窄,在炭黑载体上分散均匀,单位质量Pt对甲醇与乙醇电催化氧化的活性相当;NaBH4还原法所制Pt/C催化剂中Pt0和Pt(220)晶面含量更高,Pt对甲醇与乙醇电催化氧化的峰电流密度分别为0.68与0.67 mA/cm2,分别是EG还原法所制Pt/C催化剂的1.2倍;2种催化剂对甲醇与乙醇电催化氧化的活性均与商品E-TEK催化剂相当.  相似文献   

5.
二甲醚在Pt系催化剂上的电氧化行为初探   总被引:4,自引:0,他引:4  
本实验用化学浸渍-还原法,甲醛为还原剂制备直接二甲醚燃料电池阳极催化剂。用循环伏安法和稳态极化法,采用粉末微电极技术,研究二甲醚在自制Pt/C、PtSn/C和PtRu/C催化剂上的氧化行为。研究结果显示,二甲醚在PtRu/C上有较佳的反应活性。在PtRu/C催化剂上考察温度对于二甲醚电氧化的催化活性的影响,得出温度的升高有利于二甲醚电氧化的进行。  相似文献   

6.
Low platium loading Pt/C catalyst was prepared by direct Pt-embedded carbon xerogel method. The Pt content of the as-prepared Pt/C is about 4.32 wt% and has a typical polycrystalline phase. Textural and structural characteristics of the catalysts were characterized by XRD, EDS and BET. Pt-embedded in carbon xerogel increases the specific surface area and pore volume of the X-Pt/C during carbon gelation and the carbonization process. Electrochemical characteristics of the catalysts for ethanol electrooxidation were measured. The results indicated that the as-prepared 4.32 wt% Pt/C has higher mass current density in ethanol electrooxidation as compared to the 20 wt% Pt/C. This may be due to the high roughness of the Pt surface that is formed during the carbon gelation and carbonization process.  相似文献   

7.
The ethylene glycol and 2-propanol electrooxidation reaction was studied on carbon dispersed ordered intermetallic PtPb nanocatalysts in KOH solution. X-ray diffraction and X-ray photoelectron spectroscopy were used to characterize ordered intermetallic PtPb/C catalysts. The electrochemical behaviors for the ethylene glycol and 2-propanol electrooxidation reaction were measured in a thin film electrode by cyclic voltammetry, Tafel curves and electrochemical impedance spectroscopy. The results showed that in contrast with PtRu/C and Pt/C catalyst, ordered intermetallic PtPb/C had better electroactivity, and kinetic mechanism of PtPb/C is complex. Although the activity of electrocatalysts depends on many factors, such as modification of geometric and electronic structure by Pt-Pb interaction, crystalline size and so on. But the key factor for each electrooxidation reaction was different. For ethylene glycol electrooxidation, the effect of formation and desorption of poisonous species on activity of catalyst was very significant. For 2-propanol electrooxidation, the modification of geometric and electronic structures may be play a decisive role in the enhance activity of electrocatalyst.  相似文献   

8.
Template synthesis of various nitrogen containing carbon nanotubes using different nitrogen containing polymers and the variation of nitrogen content in carbon nanotube (CNT) on the behaviour of supported Pt electrodes in the anodic oxidation of methanol in direct methanol fuel cells was investigated. Characterizations of the as-prepared catalysts are investigated by electron microscopy and electrochemical analysis. The catalyst with N-containing CNT as a support exhibits a higher catalytic activity than that carbon supported platinum electrode and CNT supported electrodes. The N-containing CNT supported electrodes with 10.5% nitrogen content show a higher catalytic activity compared to other N-CNT supported electrodes. This could be due to the existence of additional active sites on the surface of the N-containing CNT supported electrodes, which favours better dispersion of Pt particles. Also, the strong metal-support interaction plays a major role in enhancing the catalytic activity for methanol oxidation.  相似文献   

9.
采用化学还原法制备了不同原子比的Pd-Ag/C催化剂。通过X射线衍射(XRD)表征了催化剂的晶体结构,并运用循环伏安、计时电流等电化学方法研究了其对硼氢化钠电氧化反应的催化活性。结果表明:适量Ag的掺杂不仅可以提高催化剂的催化活性,而且使得硼氢化钠电氧化反应过程中的转移电子数增加,其中Pd75Ag25/C的催化活性和转移电子数均为最高。  相似文献   

10.
PtRuMo/C catalyst was prepared by impregnation reduction method and characterised. Comparison is made between a home‐made PtRu/C prepared by similar method and Pt/C (E‐Tek Co., Pt/C‐ET) catalysts. One glassy carbon disc electrode for ternary alloy catalyst was used to evaluate the catalytic performances by cyclic voltammetric, chronoamperometric, amperometric i–t curves, and electrochemical impedance spectra (EIS). The electrochemical measurement results indicated that the performance of PtRuMo/C with a molar ratio of 6:3:1 was the highest among 15 PtxRuyMo10–xy/C catalysts with different molar ratios. The composition, particle size, lattice parameter and morphology of the PtRuMo(6:3:1)/C catalyst were determined by means of X‐ray energy dispersive analysis, X‐ray diffraction (XRD) and transmission electron micrographs (TEM). The result of XRD analysis exhibits that PtRuMo(6:3:1)/C has the fcc structure with the smaller lattice parameter than the home‐made PtRu/C and Pt/C‐ET. Its typical particle sizes is only about 5 nm. With respect to the catalytic activity and stability, the PtRuMo(6:3:1)/C catalyst is superior to PtRu/C despite their comparable active areas. Though the electrochemically active surface area of Pt/C‐ET is the biggest, its performance is the lowest. EIS results also indicate that the reaction resistances for methanol electrooxidation on the PtRuMo(6:3:1)/C catalyst are smaller than those of PtRu/C at different polarisation potentials.  相似文献   

11.
To determine the influence of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation, this work investigated methanol electrooxidation on as received and different electrochemically polarized PtRu/C catalysts. Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were used to characterize the redox state of PtRu/C after different electrochemical polarization. The methanol electrooxidation activity was measured by cyclic voltammetry (CV), Tafel steady state plot and electrochemical impedance spectroscopy (EIS). The results indicate that the metallic state Pt0Ru0 can be formed during cathodic polarization and contribute to electrooxidation of methanol, while the formation of inactive ruthenium oxides during anodic polarization cause the negative effect on methanol electrooxidation. Different Tafel slopes and impedance behaviors in different potential regions also reveal a change of the mechanism and rate-determining step in methanol electrooxidation with increasing potentials. The kinetic analysis from Tafel plots and EIS reveal that at low potentials indicate the splitting of the first CH bond of CH3OH molecule with the first electron transfer is rate-determining step. However, at higher potentials, the oxidation reaction of adsorbed intermediate COads becomes rate-determining step.  相似文献   

12.
The method of borohydride reduction (BH) has been applied to synthesize Pt and PtCo nanoparticles supported on Magneli phase titanium oxides, using Pt and Co ethylenediamine complexes as metal precursors. The phase composition of the synthesized catalysts, their morphology and surface structure were studied by physical methods for bulk and surface analysis, such as electron microprobe analysis (EMPA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and BET technique. The catalytic activity towards oxygen evolution reaction in alkaline aqueous solution was investigated using the common electrochemical techniques. It was found that PtCo/Ebonex facilitates essentially the oxygen evolution which starts at lower overpotentials and proceeds with higher rate compared to both the supported Pt and unsupported PtCo catalysts. The observed effect is prescribed to metal-metal and metal-support interactions. The Ebonex possesses a good electrical conductivity and corrosion resistance at high anodic potentials and despite its low surface area is considered as a potential catalyst carrier for the oxygen evolution reaction.  相似文献   

13.
The factors controlling the behavior and the stability of electrocatalysts based on Pt, Ru and Mo nanoparticles during exhaustive electrochemical treatment are examined. Along this treatment, it has been observed that in the case of ternary catalysts there are pronounced changes in the structure of their surface resulting in electrode activation for methanol and CO electrooxidation, whereas the activity of binary PtRu/C and PtMo/C catalysts decreases. Therefore, the role of both Ru and Mo is crucial for the electrochemical activation of the catalyst, though metal losses do occur during electrochemical process. For the first time a detailed study of this phenomenon is presented, including characterization by HRTEM, TXRF, XRD, electrochemical measurements and in situ Fourier transform infrared spectroscopy (FTIR). In order to get a deeper insight into the surface structure, chemical state, and stability of the electrocatalyst under reaction conditions, a combination of cyclic voltammetry, chronoamperometry and X-ray photoelectron spectroscopy (XPS) has been used. By comparing bulk and surface composition, our results point out to the key role of the geometric effect enhanced by previous reduction of the nanoparticles. At the end of the electrochemical treatment, Mo-PtRu/C catalysts surface was restructured with substantial enrichment in Pt and a less pronounced Mo surface enrichment, while Ru is incorporated into the Pt-Mo overlayer. These results underline the possibility of further optimization of the surface structure and composition producing PtRuMo nanoparticles with high methanol and CO oxidation activity.  相似文献   

14.
In order to develop a cheaper and durable catalyst for methanol electrooxidation reaction, ceria (CeO2) as a co-catalytic material with Pt on carbon was investigated with an aim of replacing Ru in PtRu/C which is considered as prominent anode catalyst till date. A series of Pt-CeO2/C catalysts with various compositions of ceria, viz. 40 wt% Pt-3–12 wt% CeO2/C and PtRu/C were synthesized by wet impregnation method. Electrocatalytic activities of these catalysts for methanol oxidation were examined by cyclic voltammetry and chronoamperometry techniques and it is found that 40 wt% Pt-9 wt% CeO2/C catalyst exhibited a better activity and stability than did the unmodified Pt/C catalyst. Hence, we explore the possibility of employing Pt-CeO2 as an electrocatalyst for methanol oxidation. The physicochemical characterizations of the catalysts were carried out by using Brunauer Emmett Teller (BET) surface area and pore size distribution (PSD) measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. A tentative mechanism is proposed for a possible role of ceria as a co-catalyst in Pt/C system for methanol electrooxidation.  相似文献   

15.
The Pd/ZrC–C and Pd/ZrO2–C catalysts with zirconium compounds ZrC or ZrO2 and carbon hybrids as novel supports for direct formic acid fuel cell (DFAFC) have been synthesized by microwave‐assisted polyol process. The Pd/ZrC–C and Pd/ZrO2–C catalysts have been characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), energy dispersive analysis of X‐ray (EDAX), transmission electron microscopy (TEM), and electrochemical measurements. The physical characteristics present that the zirconium compounds ZrC and ZrO2 may promote the dispersion of Pd nanoparticles. The results of electrochemical tests show that the activity and stability of Pd/ZrC–C and Pd/ZrO2–C catalysts show higher than that of Pd/C catalyst for formic acid electrooxidation due to anti‐corrosion property of zirconium compounds ZrC, ZrO2, and metal–support interaction between Pd nanoparticles and ZrC, ZrO2. The Pd/ZrC–C catalyst displays the best performance among the three catalysts. The peak current density of formic acid electrooxidation on Pd/ZrC–C electrode is nearly 1.63 times of that on Pd/C. The optimal mass ratio of ZrC to XC‐72 carbon is 1:1 in Pd/ZrC–C catalyst with narrower particle size distribution and better dispersion on surface of the mixture support, which exhibits the best activity and stability for formic acid electrooxidation among all the samples.  相似文献   

16.
The nanostructured Co/Co–Ni–Pt catalyst were synthesized by electrodeposition process and galvanic replacement reaction. The alloy prepared on a copper electrode (Cu/Co/Co–Ni–Zn) was dipped in platinum containing alkaline solution to produce a porous Cu/Co/Co–Ni–Pt catalyst. The catalyst was characterized by energy dispersive X-ray and scanning electron microscopy techniques and its electrocatalytic properties were evaluated using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques. The results showed that the Co/Co–Ni–Pt coatings are porous, and composed of discrete Pt nanoparticles with the crystallite size of about 66 nm. It was shown from cyclic voltammograms in alkaline solutions that the oxidation current of methanol on the nanostructured Cu/Co/Co–Ni–Pt electrode was much higher than that on flat platinum. Electrochemical impedance spectra on the Co/Co–Ni–Pt electrode reveal that the charge transfer resistance decreases with the increase of anodic potentials. All results show that the Co/Co–Ni–Pt catalysts can be potential anode catalysts for the direct methanol fuel cell.  相似文献   

17.
This research is aimed to improve the activity and stability of ternary alloy Pt–Ru–Ni/C catalyst. A novel anodic catalyst for direct methanol fuel cell (DMFC), carbon supported Pt–Ru–Ni–P nanoparticles, has been prepared by chemical reduction method by using NaH2PO2 as a reducing agent. One glassy carbon disc working electrode is used to test the catalytic performances of the homemade catalysts by cyclic voltammetric (CV), chronoamperometric (CA) and amperometric it measurements in a solution of 0.5 mol L–1 H2SO4 and 0.5 mol L–1 CH3OH. The compositions, particle sizes and morphology of home‐made catalysts are evaluated by means of energy dispersive analysis of X‐ray (EDAX), X‐ray diffraction (XRD) and transmission electron micrographs (TEM), respectively. TEM images show that Pt–Ru–Ni–P nanoparticles have an even size distribution with an average diameter of less than 2 nm. The results of CV, CA and it curves indicate that the Pt–Ru–Ni–P/C catalyst shows significantly higher activity and stability for methanol electrooxidation due to the presence of non‐metal phosphorus in comparison to Pt–Ru–Ni/C one. All experimental results indicate that the addition of non‐metallic phosphorus into the Pt–Ru–Ni/C catalyst has definite value of research and practical application for enhancing the performance of DMFC.  相似文献   

18.
In order to develop a cheaper and durable catalyst for methanol electrooxidation reaction, ceria (CeO2) as a co-catalytic material with Pt on carbon was investigated with an aim of replacing Ru in PtRu/C which is considered as prominent anode catalyst till date. A series of Pt-CeO2/C catalysts with various compositions of ceria, viz. 40 wt% Pt-3–12 wt% CeO2/C and PtRu/C were synthesized by wet impregnation method. Electrocatalytic activities of these catalysts for methanol oxidation were examined by cyclic voltammetry and chronoamperometry techniques and it is found that 40 wt% Pt-9 wt% CeO2/C catalyst exhibited a better activity and stability than did the unmodified Pt/C catalyst. Hence, we explore the possibility of employing Pt-CeO2 as an electrocatalyst for methanol oxidation. The physicochemical characterizations of the catalysts were carried out by using Brunauer Emmett Teller (BET) surface area and pore size distribution (PSD) measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. A tentative mechanism is proposed for a possible role of ceria as a co-catalyst in Pt/C system for methanol electrooxidation.  相似文献   

19.
The effect of temperature on the electrochemical behaviour of aliphatic alcohols on Pt is studied by the potential sweep method in the temperature range 15°–60° C. No changes in the mechanism of electrooxidation of primary alcohols are observed. In the current—potential curves of secondary alcohols a new maximum at about 0.9 V appears at higher temperatures connected probably with the oxidation of products of the destructive chemisorption in the double-layer region on anodic sweep. Unexpected electrochemical activity is found for tertiary alcohols at higher temperatures. The mechanism of electrooxidation of the latter compounds differs strongly from that of the two other types of alcohols, which is attributed to the lack of hydrogen at the α-C atom. Apparent activation energies are calculated in the different potential ranges.  相似文献   

20.
Carbon-supported platinum catalysts (Pt/C) were prepared by treatment of PtO2/C under different conditions: (a) heating at 380°C in air, argon and hydrogen; (b) electrochemical reduction in H2SO4; and (c) reduction with NaBH4. The effect of the preparation conditions on the structure and the catalytic activity of the catalysts for the electrooxidation of CH3OH in acid media was studied. The highest activity was achieved for the catalyst treated in air. The activity is determined by the crystal faces exposed at the particle surface as well as particle size and the partial oxidation of the carbon support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号