首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel platform, which hemoglobin (Hb) was immobilized on core–shell structurally Fe3O4/Au nanoparticles (simplified as Fe3O4@Au NPs) modified glassy carbon electrode (GCE), has been developed for fabricating the third biosensors. Fe3O4@Au NPs, characterized using transmission electron microscope (TEM), scanning electron microscope (SEM) and energy dispersive spectra (EDS), were coated onto GCE mediated by chitosan so as to provide larger surface area for anchoring Hb. The thermodynamics, dynamics and catalysis properties of Hb immobilized on Fe3O4@Au NPs were discussed by UV–visible spectrum (UV–vis), electrochemical impedance spectroscopy (EIS), electrochemical quartz crystal microbalance technique (EQCM) and cyclic voltammetry (CV). The electrochemical parameters of Hb on Fe3O4@Au NPs modified GCE were further carefully calculated with the results of the effective working area as 3.61 cm2, the surface coverage concentration (Γ) as 1.07 × 10−12 mol cm−2, the electron-transfer rate constant (Ks) as 1.03 s−1, the number of electron transferred (n) as 1.20 and the standard entropy of the immobilized Hb (ΔS0′) as calculated to be −104.1 J mol−1 K−1. The electrocatalytic behaviors of the immobilized Hb on Fe3O4@Au NPs were applied for the determination of hydrogen peroxide (H2O2), oxygen (O2) and trichloroacetic acid (TCA). The possible functions of Fe3O4 core and Au shell as a novel platform for achieving Hb direct electrochemistry were discussed, respectively.  相似文献   

2.
In this work, a series of Fe3−xTixO4 (0 ≤ x ≤ 0.78) was synthesized using a new soft chemical method. The synthetic Fe3−xTixO4 were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Mössbauer spectroscopy, thermogravimetric and differential scanning calorimetry (TG–DSC) analyses. The results showed that they were spinel structures and Ti was introduced into their structures.Then, decolorization of methylene blue (MB) by Fe3−xTixO4 in the presence of H2O2 at neutral pH values was studied using UV–vis spectra, dissolved organic carbon (DOC) and element C analyses. Furthermore, the degradation products remained in reaction solution after the decolorization were identified using ionic chromatography (IC), 13C nuclear magnetic resonance spectra (NMR), liquid chromatography and mass spectrometry (LC–MS). Although small amounts of MB were mineralized, the aromatic rings in MB were destroyed completely after the decolorization. Decolorization of MB by Fe3−xTixO4 in the presence of H2O2 was promoted remarkably with the increase of Ti content in Fe3−xTixO4 due to the enhancement of both adsorption and degradation of MB on Fe3−xTixO4.  相似文献   

3.
SmYb1−xMgxZr2O7−x/2 (0 ≤ x ≤ 0.15) ceramics are pressureless-sintered at 1973 K for 10 h in air. The structure and electrical conductivity of SmYb1−xMgxZr2O7−x/2 ceramics are investigated by the X-ray diffraction, scanning electron microscopy and impedance spectroscopy measurements. SmYb1−xMgxZr2O7−x/2 ceramics exhibit a defect fluorite-type structure. The measured electrical conductivities of SmYb1−xMgxZr2O7−x/2 ceramics obey the Arrhenius relation, and electrical conductivity of each composition increases with increasing temperature from 673 to 1173 K. At identical temperature levels, the electrical conductivity of SmYb1−xMgxZr2O7−x/2 ceramics gradually increases with increasing magnesia content. SmYb1−xMgxZr2O7−x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The electrical conductivity obtained in SmYb1−xMgxZr2O7−x/2 ceramics reaches the highest value of 2.72 × 10−3 S cm−1 at 1173 K for the SmYb0.85Mg0.15Zr2O6.925 ceramic.  相似文献   

4.
InBaCo4−xZnxO7 oxides have been synthesized and characterized as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The effect of Zn substitution for Co on the structure, phase stability, thermal expansion, and electrochemical properties of the InBaCo4−xZnxO7 has been investigated. The increase in the Zn content from x = 1 to 1.5 improves the high temperature phase stability at 600 °C and 700 °C for 100 h, and chemical stability against a Gd0.2Ce0.8O1.9 (GDC) electrolyte. Thermal expansion coefficient (TEC) values of the InBaCo4−xZnxO7 (x = 1, 1.5, 2) specimens were determined to be 8.6 × 10−6 to 9.6 × 10−6/°C in the range of 80–900 °C, which provides good thermal expansion compatibility with the standard SOFC electrolyte materials. The InBaCo4−xZnxO7 + GDC (50:50 wt.%) composite cathodes exhibit improved cathode performances compared to those obtained from the simple InBaCo4−xZnxO7 cathodes due to the extended triple-phase boundary (TPB) and enhanced oxide-ion conductivity through the GDC portion in the composites.  相似文献   

5.
A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with single wall carbon nanotubes (SWCNTs) and phenazine derivative of Mn-complex. With immersing the GC/CNTs modified electrode into Mn-complex solution for a short period of time 20–100 s, a stable thin layer of the complex was immobilized onto electrode surface. Modified electrode showed a well defined redox couples at wide pH range (1–12). The surface coverages and heterogeneous electron transfer rate constants (ks) of immobilized Mn-complex were approximately 1.58 × 10−10 mole cm−2 and 48.84 s−1. The modified electrode showed excellent electrocatalytic activity toward H2O2 reduction. Detection limit, sensitivity, linear concentration range and kcat for H2O2 were, 0.2 μM and 692 nA μM−1 cm−2, 1 μM to 1.5 mM and 7.96(±0.2) × 103 M−1 s−1, respectively. Compared to other modified electrodes, this electrode has many advantageous such as remarkable catalytic activity, good reproducibility, simple preparation procedure and long term stability.  相似文献   

6.
LiCoxMn1−xPO4/C nanocomposites (0 ≤ x ≤ 1.0) were prepared by a combination of spray pyrolysis at 300 °C and wet ball-milling followed by heat treatment at 500 °C for 4 h in 3% H2 + N2 atmosphere. X-ray diffraction analysis indicated that all samples had the single phase olivine structures indexed by orthorhombic Pmna. The lattice parameters linearly decreased with increasing cobalt content, which confirmed the existence of solid solutions. It was clearly seen from the scanning electron microscopy observation that the LiCoxMn1−xPO4/C samples were agglomerates with approximately 100 nm primary particles. The LiCoxMn1−xPO4/C nanocomposites were used as cathode materials for lithium batteries, and electrochemical performance was comparatively investigated with cyclic voltammetry and galvanostatic charge–discharge test using the Li?1 M LiPF6 in EC:DMC = 1:1?LiCoxMn1−xPO4/C cells at room temperature. The cells at 0.05 C charge–discharge rate delivered first discharge capacities of 165 mAh g−1 (96% of theoretical capacity) at x = 0, 136 mAh g−1 at x = 0.2, 132 mAh g−1 at x = 0.5, 125 mAh g−1 at x = 0.8 and 132 mAh g−1 (79% of theoretical capacity) at x = 1.0, respectively. While the first discharge capacity increased with the cobalt content at high charge–discharge rates more than 0.5 C due to higher electronic conductivity of LiCoPO4 in comparison with LiMnPO4, the cycleability of cell became worse with increasing the amount of cobalt. The existence of Mn2+ seemed to enhance the cycleability of LiCoxMn1−xPO4/C nanocomposite cathode.  相似文献   

7.
Fe1−xCox nanowires in self-assembled arrays with varying compositions were produced by the template-assisted pulsed electrochemical deposition method. The structural and magnetic properties of the arrays were investigated using several experimental techniques. TEM analyses indicated that the nanowires were regular, uniform, 8 μm in length and 50 nm in diameter. The results of X-ray diffraction indicated that the body-centered-cubic (bcc) (α), face-centered-cubic (fcc) (γ), and hexagonal-close-packed (hcp) () Fe–Co phases appeared in different compositions. Magnetic measurements showed that the coercivity and squareness of the hysteresis loops of the Fe1−xCox changed with their compositions, which may be attributable to shape anisotropy. The room temperature 57Fe Mössbauer spectra of the arrays of the Fe1−xCox nanowires revealed strong shape anisotropy.  相似文献   

8.
(LaxSr1−x)MnO3 (LSMO) and (LaxSr1−x)FeO3 (LSFO) (x = 0.2–0.4) ceramics prepared by a simple and effective reaction-sintering process were investigated. Without any calcination involved, La2O3 and SrCO3 were mixed with MnO2 (LSMO) or Fe2O3 (LSFO) then pressed and sintered directly. LSMO and LSFO ceramics were obtained after 2 and 4 h sintering at 1350–1400 and 1200–1280 °C, respectively. Grain size decreased as La content increased in LSMO and LSFO ceramics.  相似文献   

9.
The direct electrochemistry of hemoglobin (Hb) has been achieved by immobilizing Hb on mesoporous Al2O3 (meso-Al2O3) film modified glassy carbon (GC) electrode. Meso-Al2O3 shows significant promotion to the direct electron-transfer of Hb, thus it exhibits a pair of well defined and quasi-reversible peaks with a formal potential of −0.345 V (vs. SCE). The electron-transfer rate constant (ks) is estimated to be 3.17 s−1. The immobilized Hb retains its biological activity well and shows high catalytic activity to the reduction of hydrogen peroxide (H2O2) and nitrite (NO2). Under the optimized experimental conditions, the catalytic currents are linear to the concentrations of H2O2 and NO2 in the ranges of 0.195-20.5 μM and 0.2-10 mM, respectively. The corresponding detection limits are 1.95 × 10−8 M and 3 × 10−5 M (S/N = 3). The resulting protein electrode has high thermal stability and good reproducibility due to the protection effect of meso-Al2O3. Ultraviolet visible (UV-vis) absorption spectra and reflection-absorption infrared (RAIR) spectra display that Hb keeps almost natural structure in the meso-Al2O3 film. The N2 adsorption-desorption experiments show that the pore size of meso-Al2O3 is about 14.4 nm, suiting for the encapsulation of Hb (average size: 5.5 nm) well. Therefore, meso-Al2O3 is an alternative matrix for protein immobilization and biosensor preparation.  相似文献   

10.
This paper reports the application of chitosan–Fe3O4 (CS–Fe3O4) nanocomposite modified glassy carbon electrodes for the amperometric determination of bisphenol A (BPA). We observed that the CS–Fe3O4 nanocomposite could remarkably enhance the current response and decrease its oxidation overpotential in the electrochemical detection. Experimental parameters, such as the amount of the CS–Fe3O4, the accumulation potential and time, the pH value of buffer solution etc. were optimized. Under the optimized conditions, the oxidation peak current was proportional to BPA concentration in the range between 5.0 × 10−8 and 3.0 × 10−5 mol dm−3 with the correlation coefficient of 0.9992 and the limit of detection of 8.0 × 10−9 mol dm−3 (S/N = 3). The proposed sensors were successfully employed to determine BPA in real plastic products and the recoveries were between 92.0% and 06.2%. This strategy might open more opportunities for the electrochemical determination of BPA in practical applications. Additionally, the leaching studies of BPA on incubation time using the as-prepared modified electrode were successfully carried out.  相似文献   

11.
La(1−x)SrxCo(1−y)FeyO3 samples have been prepared by sol–gel method using EDTA and citric acid as complexing agents. For the first time, Raman mappings were achieved on this type of samples especially to look for traces of Co3O4 that can be present as additional phase and not detect by XRD. The prepared samples were pure perovskites with good structural homogeneity. All these perovskites were very active for total oxidation of toluene above 200 °C. The ageing procedure used indicated good thermal stability of the samples. A strong improvement of catalytic properties was obtained substituting 30% of La3+ by Sr2+ cations and a slight additional improvement was observed substituting 20% of cobalt by iron. Hence, the optimized composition was La0.7Sr0.3Co0.8Fe0.2O3. The samples were also characterized by BET measurements, SEM and XRD techniques. Iron oxidation states were determined by Mössbauer spectroscopy. Cobalt oxidation states and the amount of O electrophilic species were analyzed from XPS achieved after treatment without re-exposition to ambient air. Textural characterization revealed a strong increase in the specific surface area and a complete change of the shape of primary particles substituting La3+ by Sr2+. The strong lowering of the temperature at conversion 20% for the La0.7Sr0.3Co(1−y)FeyO3 samples can be explained by these changes. X photoelectron spectra obtained with our procedure evidenced very high amount of O electrophilic species for the La0.7Sr0.3Co(1−y)FeyO3 samples. These species able to activate hydrocarbons could be the active sites. The partial substitution of cobalt by iron has only a limited effect on the textural properties and the amount of O species. However, Raman spectroscopy revealed a strong dynamic structural distortion by Jahn–Teller effect and Mössbauer spectroscopy evidenced the presence of Fe4+ cations in the iron containing samples. These structural modifications could improve the reactivity of the active sites explaining the better specific activity rate of the La0.7Sr0.3Co0.8Fe0.2O3 sample. Finally, an additional improvement of catalytic properties was obtained by the addition of 5% of cobalt cations in the solution of preparation. As evidenced by Raman mappings and TEM images, this method of preparation allowed to well-dispersed small Co3O4 particles that are very efficient for total oxidation of toluene with good thermal stability contrary to bulk Co3O4.  相似文献   

12.
The deNO x catalytic properties of a new class of open-framework structure materials, Li6[Mn3(H2O)12V18O42(XO4)] · 24H2O (X = V, S) (1), [Fe3(H2O)12 V18O42(XO4)] · 24H2O (X = V, S) (2), [Co3(H2O)12V18O42(XO4)] · 24H2O (X = V, S) (3), and Li6[Ni 3 II (H2O)12V 16 VI V 2 V O42(SO4)] · 24H2O (4), have been studied. The crystal structures of these novel systems consist of three-dimensional arrays of vanadium oxide clusters {V18O42(XO4)} , as building block units, interlinked by {–O–M–O–} (M = Mn, 1; M = Fe, 2; M = Co, 3; M = Ni, 4) bridges. Their open-framework structures contain cavities, similar to those observed in conventional zeolites, which are occupied by exchangeable cations and/or readily removable water of hydration. The catalysts derived from these materials were tested for the selective catalytic reduction (SCR) of nitrogen oxides {NO x } into N2 using a hydrocarbon, propylene, as the reducing agent. The catalysts were ineffective under lean burn conditions. However, the new catalysts, especially the one derived from the cobalt derivative (3), showed intriguing deNO x activity under rich conditions. They remove up to ~ 99% of the toxic NO x emissions in 1.5% O2 with 100% selectivity to N2. The active phase of the catalysts exhibit good stability, can be readily regenerated, and are selective to the desired product-N2. The catalytic reactions occur at moderately low temperatures (400–500 °C). The catalysts were characterized by FT-IR, temperature programmed reactions (TPR and TPO), SEM, BET surface area measurements, elemental analysis, and X-ray diffraction (XRD). Additional advanced techniques were used to further characterize the catalyst phases that showed most promising deNO x activity and increased tolerance to oxygen.  相似文献   

13.
Cr-doped Li9V3−xCrx(P2O7)3(PO4)2 (x = 0.0–0.5) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li9V3−xCrx(P2O7)3(PO4)2 (x = 0.0–0.5) with trigonal structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content. Li9V2.8Cr0.2(P2O7)3(PO4)2 compound presents the good electrochemical rate and cyclic ability. The enhancement of rate and cyclic capability may be attributed to the optimizing particle size, morphologies, and structural stability during the proper amount of Cr-doping (x = 0.2) in V sites.  相似文献   

14.
Graphene was prepared successfully by introducing -SO3 to separate the individual sheets. TEM, EDS and Raman spectroscopy were utilized to characterize the morphology and composition of graphene oxide and graphene. To construct the H2O2 biosensor, graphene and horseradish peroxidase (HRP) were co-immobilized into biocompatible polymer chitosan (CS), then a glassy carbon electrode (GCE) was modified by the biocomposite, followed by electrodeposition of Au nanoparticles on the surface to fabricate Au/graphene/HRP/CS/GCE. Cyclic voltammetry demonstrated that the direct electron transfer of HRP was realized, and the biosensor had an excellent performance in terms of electrocatalytic reduction towards H2O2. The biosensor showed high sensitivity and fast response upon the addition of H2O2, under the conditions of pH 6.5, potential −0.3 V. The time to reach the stable-state current was less than 3 s, and the linear range to H2O2 was from 5 × 10−6 M to 5.13 × 10−3 M with a detection limit of 1.7 × 10−6 M (S/N = 3). Moreover, the biosensor exhibited good reproducibility and long-term stability.  相似文献   

15.
A series of ZnxMg1 − xGa2O4:Co2+ spinels (x = 0, 0.25, 0.5, 0.75, and 1.0) was successfully produced through low-temperature burning method by using Mg(NO3)2·4H2O, Zn(NO3)2·6H2O, Ga(NO3)3·6H2O, CO(NH2)2, NH4NO3, and Co(NO3)2·6H2O as raw materials. The product was characterized by X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The product was not merely a simple mixture of MgGa2O4 and ZnGa2O4; rather, it formed a solid solution. The lattice constant of ZnxMg1 − xGa2O4:Co2+ (0 ≤ x ≤ 1.0) crystals has a good linear relationship with the doping density, x. The synthesized products have high crystallinities with neat arrays. Based on an analysis of the form and position of the emission spectrum, the strong emission peak around the visible region (670 nm) can be attributed to the energy level transition [4T1(4P) → 4A2(4F)] of Co2+ in the tetrahedron. The weak emission peak in the near-infrared region can be attributed to the energy level transition [4T1(4P) → 4T2(4F)] of Co2+ in the tetrahedron.  相似文献   

16.
Cathode active materials with a composition of LiNi0.9Co0.1O2 were synthesized by a solid-state reaction method at 850 °C using Li2CO3, NiO or NiCO3, and CoCO3 or Co3O4, as the sources of Li, Ni, and Co, respectively. Electrochemical properties, structure, and microstructure of the synthesized LiNi0.9Co0.1O2 samples were analyzed. The curves of voltage vs. x in LixNi0.9Co0.1O2 for the first charge–discharge and the intercalated and deintercalated Li quantity Δx were studied. The destruction of unstable 3b sites and phase transitions were discussed from the first and second charge–discharge curves of voltage vs. x in LixNi0.9Co0.1O2. The LiNi0.9Co0.1O2 sample synthesized from Li2CO3, NiO, and Co3O4 had the largest first discharge capacity (151 mA h/g), with a discharge capacity deterioration rate of −0.8 mA h/g/cycle (that is, a discharge capacity increasing 0.8 mA h/g per cycle).  相似文献   

17.
LiNi1−xCoxO2 (x = 0, 0.1, 0.2) cathode materials were successfully synthesized by a rheological phase reaction method with calcination time of 0.5 h at 800 °C. All obtained powders are pure phase with α-NaFeO2 structure (R-3m space group). The samples deliver an initial discharge capacity of 182, 199 and 189 mAh g−1 (25 mA g−1, 4.35-3.0 V), respectively. The reaction mechanism was also discussed, which consists of a series of defect reactions. As a result of these defect reactions, the reaction of forming LiNi1−xCoxO2 takes place in high speed.  相似文献   

18.
A new series of rare earth solid solutions Sc2−xYxW3O12 was successfully synthesized by the conventional solid-state method. Effects of doping ion yttrium on the crystal structure, morphology and thermal expansion property of as-prepared Sc2−xYxW3O12 ceramics were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TG), field emission scanning electron microscope (FE-SEM) and thermal mechanical analyzer (TMA). Results indicate that the obtained Sc2−xYxW3O12 samples with Y doping of 0≤x≤0.5 are in the form of orthorhombic Sc2W3O12-structure and show negative thermal expansion (NTE) from room temperature to 600 °C; while as-synthesized materials with Y doping of 1.5≤x≤2 take hygroscopic Y2W3O12·nH2O-structure at room temperature and exhibit NTE only after losing water molecules. It is suggested that the obvious difference in crystal structure leads to different thermal expansion behaviors in Sc2−xYxW3O12. Thus it is proposed that thermal expansion properties of Sc2−xYxW3O12 can be adjusted by the employment of Y dopant; the obtained Sc1.5Y0.5W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.00683×10−6 °C−1 in the 25–250 °C range.  相似文献   

19.
Zeolites having MFI, FER and *BEA topology were loaded with iron using solid state cation exchange method. The Fe:Al atomic ratio was 1:4. The zeolites were characterized using nitrogen adsorption, FTIR and DR UV–Vis–NIR spectroscopy. The catalytic activity in NO oxidation and the occurrence of NO x adsorption was determined in a fixed-bed mini reactor using gas mixtures containing oxygen and water in addition to NO and NO2 and temperatures of 200–350 °C. Under these reaction conditions, the NO x adsorption capacity of these iron zeolites was negligible. The kinetic data could be fitted with a LHHW rate expression assuming a surface reaction between adsorbed NO and adsorbed O2. The kinetic analysis revealed the occurrence of strong reaction inhibition by adsorbed NO2. FER and MFI zeolites were more active than *BEA type zeolite. MFI zeolite is most active but suffers most from NO2 inhibition of the reaction rate. FTIR and UV–Vis spectra suggest that isolated Fe3+ cations and binuclear Fe3+ complexes are active NO oxidation sites. Compared to the isolated Fe3+ species, the binuclear complexes abundantly present in the MFI zeolite seem to be most sensitive to poisoning by NO2.  相似文献   

20.
A new type of Li1−x Fe0.8Ni0.2O2-Li x MnO2 (Mn/(Fe+Ni+Mn)=0.8) material was synthesized at 350 °C in an air atmosphere by a solid-state reaction. The material had an XRD pattern that closely resembled that of the original Li1−x FeO2-Li x MnO2 ((Fe+Ni+Mn)=0.8) with much reduced impurity peaks. It was composed of many large particles of about 500–600 nm and small particles of about 100–200 nm, which were distributed among the larger particles. The Li/Li1−x Fe0.8Ni0.2O2-Li x MnO2 cell showed a high initial discharge capacity above 192 mAh/g, which was higher than that of the parent Li/Li1−x FeO2-Li x MnO2 (186 mAh/g). This cell exhibited not only a typical voltage plateau in the 2.8 V region, but also an excellent cycle retention rate (96%) up to 45 cycles. We suggest a unique role of doped nickel ion in the Li/Li1−x Fe0.8Ni0.2O2-Li x MnO2 cell, which results in the increased initial discharge capacity from the redox reaction of Ni2+/Ni3+ between 2.0 and 1.5 V region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号