首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
随着弹体的侵彻能力逐渐增强,复合防弹装甲成为不可或缺的装备之一。基于ANSYS建立了陶瓷/纤维/阻尼复合防弹靶板的冲击有限元模型,揭示了材料参数和几何参数对复合防弹靶板的影响规律,利用多目标遗传算法优化了碳化硅陶瓷/碳纤维/超高分子量聚乙烯纤维/背层阻尼复合防弹靶板结构,并通过实验验证了优化设计结果的可信性。结果表明:同面密度条件下,涂刷一定厚度背层阻尼对靶板防弹性能的提升较为显著;采用遗传算法优化后的复合防弹靶板结构为:6.9mm碳化硅陶瓷/4.8mm碳纤维层合板/6.0mm超高分子量聚乙烯(UHMWPE)纤维层合板/1.1mm阻尼,面密度为36.236kg/m2。相同防弹性能条件下,与陶瓷/装甲钢结构靶板相比,优化后的靶板面密度降低超过49%。  相似文献   

2.
陶瓷-金属复合材料在防弹领域的应用研究   总被引:4,自引:0,他引:4  
韩辉  李军  焦丽娟  李楠 《材料导报》2007,21(2):34-37
陶瓷-金属复合材料具备高硬度、高强度、高韧性以及低密度的优点,已被广泛应用于防弹领域.介绍了几种陶瓷-金属复合装甲形式及其相应特点,重点论述了陶瓷-金属功能梯度装甲的研究进展,并对其前景和当前的工作重点进行了讨论.  相似文献   

3.
简要论述了先进防弹复合材料在舰艇装甲防护中的应用,针对中小型舰艇设置轻型复合装甲的目的,进一步论证分析了舰艇轻型复合装甲的防御目标和防护部位,并结合典型防御目标-导弹爆炸破片的杀伤威力进行了计算分析。  相似文献   

4.
为研究层间混杂复合材料装甲板的防弹性能及其防弹机制,采用钢芯弹侵彻层间混杂复合材料装甲板。以超高分子量聚乙烯(Ultra high molecular weight polyethylene,UHMWPE)纤维、对位芳香族聚酰胺纤维作增强纤维,水性聚氨酯(Waterborne Polyurethane,WPU)树脂和环氧树脂(Epoxy resin,EP)作基体,采用热压工艺制备单向(Unidirectional,UD)结构的层间混杂复合材料装甲板。研究混杂比例、防弹面和树脂基体对混杂复合材料装甲板防弹性能的影响以及弹击后混杂复合材料装甲板的破坏形貌,分析混杂复合材料装甲板的防弹机制,并对复合材料装甲板的破坏机制进行了分析。结果表明:混杂复合材料装甲板的防弹性能优于其任一单一纤维复合材料装甲板;WPU的防弹性能要优于环氧树脂;以UHMWPE纤维复合材料充当防弹面时,混杂复合材料装甲板具有更好的防弹性能;纤维拉伸变形和装甲板分层是纤维复合材料装甲板主要的吸能方式。   相似文献   

5.
织物弹道贯穿性能分析计算   总被引:10,自引:4,他引:6       下载免费PDF全文
纤维织物增强复合材料由于轻质和高冲击损伤容限而在防弹装甲设计及制造中逐渐得到应用,如人体防弹衣和车辆防护装甲。但是尚无较好的方法直接计算复合材料防弹特性,其中困难在于复合材料弹道冲击过程中的应变率效应和冲击破坏机理至今没有被揭示。解决问题的第一步是建立复合材料增强相(即织物)防弹特性计算方法。提出基于纤维力学性质应变率效应的织物弹道冲击破坏分析模型,计算不同面密度织物靶体在弹道贯穿过程中的弹体剩余速度,由此反映靶体防弹特性。用本文中提出的简单算法预测的结果与实测结果在靶体厚度不大时极为接近,而且也有可能将其扩展到纤维织物增强复合材料防弹性质的计算。  相似文献   

6.
随着军用载具所受威胁的不断升级,对于驾驶舱的防护要求也在增加.传统以防弹玻璃为主的透明装甲已难以满足使用要求.更轻更薄的陶瓷基透明装甲正在逐渐成为主流选择.与其他防弹装甲相似,透明防弹装甲的主要研究方向包括:寻找性能更优的材料用于装甲组件;通过实验或计算机模拟对结构设计与弹道实验进行指导;更加深入地了解装甲材料所需的主要性能、系统整体性能以及整个系统各组件之间的相互影响.依据这一思路,本文首先简要综述了陶瓷透明防弹装甲研究较多的三种迎弹面陶瓷材料的优缺点、制备工艺以及各自的发展及应用水平,三种陶瓷中蓝宝石的静力学参数最优,而实际防弹效果则以多晶陶瓷更好,导致这一现象的原因主要是两类陶瓷碎裂模式的不同产生的弹丸-陶瓷相互作用效果的差异;然后对多晶陶瓷、单晶、玻璃三种类型材料高应变率下的裂纹扩展特性和防弹性能进行了讨论,高应变速率下材料裂纹扩展特性对冲击能量/速率是敏感的,多晶陶瓷是沿晶断裂和穿晶断裂的复合扩展方式,蓝宝石高能冲击下裂纹扩展特征类似多晶陶瓷,临界能量以下则以沿特定晶面的解理断裂为主;最后对透明防弹装甲各功能层的选材标准和结构设计原则进行了总结与展望,迎弹面优选高杨氏模量、高硬度的细晶粒多晶陶瓷材料,中间层选用具有良好的断裂韧度、高弯曲刚度以及将破碎控制在较小范围的能力的材料,背弹面要求材料具有一定的延展性和低密度的特点.各层之间需相互配合才能实现透明陶瓷装甲防弹效能的最大化.  相似文献   

7.
根据防护要求和防护机制,设计了一种C/C-SiC陶瓷/铝基复合泡沫复合装甲。在确保复合装甲面密度为44 kg/m2的前提下,以弹击后剩余弯曲强度为评价标准,以陶瓷板布置位置、各组成层厚度、泡沫金属中泡沫孔径尺寸为研究因素,设计了三因素三水平的正交模拟优化方案,利用有限元软件ABAQUS模拟了子弹侵彻陶瓷靶板的过程及弹击损伤后复合装甲的弯曲实验过程,预测了剩余弯曲强度,并进行了结构优化。根据数值模拟结果制备陶瓷复合装甲试样,进行实弹打靶和弯曲实验以验证复合装甲试样剩余弯曲强度。结果表明,以MIL-A-46103E Ⅲ类2A级为防护标准,剩余弯曲强度最高的陶瓷复合装甲最优化结构形式为:陶瓷板厚度12 mm、陶瓷板做防弹面板、Al基复合泡沫孔径为4 mm+10 mm的混合;对剩余弯曲强度的主次影响因素排序为:陶瓷板厚度>陶瓷板布置位置>Al基复合泡沫孔径。  相似文献   

8.
目的 研究冲击载荷下迎弹面覆盖止裂层的复合防弹插板陶瓷面板碎裂机理和抗侵彻性能。方法 对所设计的复合防弹插板进行空气炮打靶试验,构建冲击仿真有限元计算模型。结合试验和数值模拟,研究覆盖环氧树脂、凯夫拉平纹织物止裂层及无止裂层复合防弹插板的抗侵彻性能,分析不同冲击速度下复合防弹插板陶瓷损伤失效过程。采用内聚力单元对止裂层和陶瓷之间的黏结区域进行建模,分析黏结程度对陶瓷损伤和失效的影响。结果 止裂层表面约束的陶瓷在冲击过程中产生的径向裂纹随着撞击点附近的环向拉应力波的传播而延伸。止裂层黏结作用增强时,陶瓷的冲击缺口面积增大,但质量损失基本不变;迎弹面止裂层未对侵彻过程中子弹动能和复合防弹插板背凸情况产生显著影响。结论 止裂层在一定程度上能减少陶瓷质量损失,但也会造成更多的损伤,这种现象在高速情况下较为明显,且凯夫拉平纹织物止裂层所造成的损伤更多。相关研究工作可为陶瓷复合防弹板的设计提供参考。  相似文献   

9.
朱德举  汤兴 《复合材料学报》2020,37(10):2561-2571
个体防护装甲的发展对提高单兵作战能力具有重要意义,基于仿生研究可以为设计高性能装甲提供新的思路。犰狳外壳由六边形鳞片紧密拼接而成,采用分层结构设计,具有很好的柔性和防护能力。本文借鉴犰狳外壳的几何排列模式,采用SiC陶瓷片模仿硬质壳层,超高分子量聚乙烯(UHMWPE)热压板模仿软质壳层,按1∶1厚度比例设计制备仿生复合鳞片,将仿生鳞片紧密排列后封装制成一种新型柔性复合防弹插板。为了验证该种防弹插板的防弹性能并研究其破坏特征,进行弹道极限V0试验测试,结合有限元模拟分析其抗7.62 mm手枪弹侵彻的能力。结果表明:该柔性防弹插板不仅满足防弹性能要求,且具备较好的柔性,可为今后新型防弹插板的设计和优化提供参考。   相似文献   

10.
纤维复合材料的弹道吸能研究   总被引:27,自引:3,他引:24       下载免费PDF全文
本文通过大量的实弹试验考察与分析了芳纶、超高分子量聚乙烯纤维、玻璃纤维、碳纤维复合材料弹道吸能随面密度、弹速、成型压力、树脂基体含量等改变而变化的规律, 揭示出不同纤维复合材料在不同条件下的防弹能力。研究结果对防弹复合材料及其轻质复合装甲的优化设计具有较重要的参考意义。   相似文献   

11.
The effects of ballistic impact on morphology and microstructure of B4C/2024Al composites were studied. B4C/2024Al composites with 55% volume fraction of B4C particles were prepared by pressure infiltration method, and the experimental test of ballistic performance of composites was carried out by 7.62 mm armor piercing projectiles. The obvious upsetting of bullet and furrows on bullet tip are generated after bullet impact. Moreover, bared B4C particle distributes uniformly on the bullet surface, indicating that the composites target plays roles of passivation and abrasion on bullet. The protection coefficient of B4C/2024Al composites shows trends of falling, then an upward trend, at last keeping constant as the increasing thicknesses of targets, and could reach up to 2.8. For the composites target with semi-infinite thickness, three kinds of failure morphology are presented at the bullet crater: caving, erosion and melted areas, spreading successively as the increasing depth, which indicates that the interaction between bullets and targets is different at different stage of bullet penetration. Interestingly, the interface bonding of composites keeps well after bullet impact; moreover, no interface de-bonding was observed. High density of dislocation is generated in Al matrix around the interfaces, meanwhile, dislocations and micro-cracks were found in some B4C particles.  相似文献   

12.
In this paper, some of the important defeating mechanisms of the high hardness perforated plates against 7.62 × 54 armor piercing ammunition were investigated. The experimental and numerical results identified three defeating mechanisms effective on perforated armor plates which are the asymmetric forces deviates the bullet from its incident trajectory, the bullet core fracture and the bullet core nose erosion. The initial tests were performed on the monolithic armor plates of 9 and 20 mm thickness to verify the fidelity of the simulation and material model parameters. The stochastic nature of the ballistic tests on perforated armor plates was analyzed based on the bullet impact zone with respect to holes. Various scenarios including without and with bullet failure models were further investigated to determine the mechanisms of the bullet failure. The agreement between numerical and experimental results had significantly increased with including the bullet failure criterion and the bullet nose erosion threshold into the simulation. As shown in results, good agreement between Ls-Dyna simulations and experimental data was achieved and the defeating mechanism of perforated plates was clearly demonstrated.  相似文献   

13.
穿甲弹的弹芯是穿甲弹的主体,弹芯材料的制备、成形及侵彻过程直接决定了穿甲弹的穿甲威力。非晶复合材料具有高的剪切"自锐性"和无毒性,是一种取代钨重合金和贫铀合金的新型穿甲弹弹芯材料。本文综述了非晶复合材料穿甲弹弹芯从制备到使用所经历的基体合金和增强体选材、成形出所要求的穿甲弹弹芯外形和穿甲侵彻三个阶段的国内外研究现状。并从这三个方面指出了进一步提高非晶复合材料弹芯穿甲威力的途径。  相似文献   

14.
Although advanced lightweight composite based armors are available, high hardness steels in military vehicles are often used to provide ballistic protection at a relatively low cost and is an interesting material due to its widespread usage in vehicle structure. In this study, ballistic limit of 500 HB armor steel was determined against 7.62 mm 54R B32 API hardened steel core ammunition. Lagrange and smoothed particle hydrodynamics (SPH) simulations were carried out using 3D model of bullet and high hardness armor target. Perforation tests on 9 and 20 mm thickness armor were performed to validate simulation methodology. Also material tests were performed for armor steel and ammunition hardened steel core to develop Johnson–Cook constitutive relations for both strength and failure models. Finally, results from 3D numerical simulations with detailed models of bullet and target were compared with experiments. The study indicates that the ballistic limit can be quantitatively well predicted independent of chosen simulation methodology, but qualitatively some differences are seen during perforation and fragmentation. As shown in results, good agreement between Ls-Dyna simulations and experimental data was achieved by Lagrange formulation with the full bullet model.  相似文献   

15.
An analytical model has been developed in this paper for the ballistic impact behavior of two-dimensional woven fabric composites of interest in body armor applications.  相似文献   

16.
Armor systems made of ceramic and composite materials are widely used in ballistic applications to defeat armor piercing (AP) projectiles. Both the designers and users of body armor face interesting choices – how best to balance the competing requirements posed by weight, thickness and cost of the armor package for a particular threat level. A finite element model with a well developed material model is indispensible in understanding the various nuances of projectile–armor interaction and finding effective ways of developing lightweight solutions. In this research we use the explicit finite element analysis and explain how the models are built and the results verified. The Johnson–Holmquist material model in LS-DYNA is used to model the impact phenomenon in ceramic material. A user defined material model is developed to characterize the ductile backing made of ultra high molecular weight polyethylene (UHMWPE) material. An ad hoc design optimization is carried out to design a thin, light and cost-effective armor package. Laboratory testing of the prototype package shows that the finite element predictions of damage are excellent though the back face deformations are under predicted.  相似文献   

17.
《Composites Part A》2001,32(8):1133-1142
The use of multi-functional integral armor is of current interest in armored vehicles and military carriers. In the present study, thick-section laminated composites and multi-layered integrated composites have been processed/manufactured with the aim of providing multi-functionality including easy reparability, quick deployment, enhanced ballistic damage and fire protection, as well as lightweight advantages. The design of an integral armor utilizes a combination of thick-section structural composite, ceramic tiles, resilient rubber, fire retardant laminate liner and a composite durability cover. Processing techniques such as automated fiber placement and/or autoclave molding are traditionally used to process dissimilar multi-layered structure, but prove to be expensive.This work focuses on emerging cost-effective liquid molding processes such as vacuum assisted resin transfer/infusion molding (VARTM) for the production of thick-section and integral armor parts (up to 50 mm thick). While thick-section composites have applications in a variety of structures including armored vehicles, marine bodies, civil infrastructure, etc. in the present work they refer to the structural laminate within the integral armor. The processing steps of thick-section composite panels and integral armor have been presented. The integrity of the interfaces has been evaluated through scanning electron microscopy (SEM). Representative results on static and dynamic response (high strain rate, HSR and ballistic impact) of the VARTM processed thick-section composite panels are presented. Wherever applicable, comparisons are made to conventional closed-mold resin transfer molding (CMRTM). Process sensing by way of flow and cure monitoring of the resin in the fiber perform has been conducted using embedded direct current (DC)-based sensors in the thick-section preform and integral armor interfaces. The feasibility of cost-effective VARTM for producing thick-section composites and integral armor has been demonstrated.  相似文献   

18.
Ballistic Penetration of Dyneema Fiber Laminate   总被引:1,自引:0,他引:1  
UHMWPE fiber (Dyneema) reinforced composites are an important class of materials for armors.These materials provide superior ballistic performance to the armor, such as the military armor systems requiring a reduction in back-armor effects or a substrate for hardened facings of steet or ceramic. The reported work characterized the ballistic impact and mechanical performance of Dyneema fiber in composite laminates. The capability of the laminate to absorb ballistic impact energy was influenced by the impact velocity and the laminate areal density. Two kinds of penetration were compared and a two-step model for the penetration was proposed.  相似文献   

19.
In modern physics and fabrication technology, simulation of projectile and target collision is vital to improve design in some critical applications, like; bulletproofing and medical applications. Graphene, the most prominent member of two dimensional materials presents ultrahigh tensile strength and stiffness. Moreover, polydimethylsiloxane (PDMS) is one of the most important elastomeric materials with a high extensive application area, ranging from medical, fabric, and interface material. In this work we considered graphene/PDMS structures to explore the bullet resistance of resulting nanocomposites. To this aim, extensive molecular dynamic simulations were carried out to identify the penetration of bullet through the graphene and PDMS composite structures. In this paper, we simulate the impact of a diamond bullet with different velocities on the composites made of single- or bi-layer graphene placed in different positions of PDMS polymers. The underlying mechanism concerning how the PDMS improves the resistance of graphene against impact loading is discussed. We discuss that with the same content of graphene, placing the graphene in between the PDMS result in enhanced bullet resistance. This work comparatively examines the enhancement in design of polymer nanocomposites to improve their bulletproofing response and the obtained results may serve as valuable guide for future experimental and theoretical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号