首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米结构电磁工程微观原理研究   总被引:5,自引:0,他引:5  
闻立时 《真空》2000,(4):1-9
本文分析了金属/电介质纳米多层膜的电磁响应和能量转换的物理原理,提出了基本理论框架,讨论了电磁响应的前提条件,透射效应、电磁响应模式、等离子模型、响应模式效率和本构特性的尺寸效应。实验结果表明,超薄Al、Ti、Fe膜在纳米范围内,随厚度变化,电导率、光学常数、介电常数、磁导率、载流子浓度和等离子体共振均存在尺寸效应。本文还讨论了纳米结构设计的基本原理。  相似文献   

2.
陶瓷硬质纳米多层膜研究进展   总被引:2,自引:0,他引:2  
陶瓷纳米多层膜因具超硬效应而成为近年的研究热点.本文对这类人工材料的研究进展和存在的不足进行了评述,并展望了进一步研究的方向.二十年来,陶瓷纳米多层膜的实验研究已取得明显进展:在微结构特征方面,两调制层形成共格外延生长结构是纳米多层膜产生超硬效应的必要微结构条件已成为共识;材料组合方面,由于模板效应,不同结构类型的材料,甚至非晶材料都可在纳米多层膜中形成共格外延生长结构,高硬度纳米多层膜材料体系已得到大大的拓展.与此相比较,对纳米多层膜强化机制和设计准则的研究相对滞后,仍停留在以金属纳米多层膜基于位错运动受阻于界面的理论解释上.因而,建立适合于陶瓷纳米多层膜的强化机制和设计准则;拓展纳米多层膜的材料组合,开发以碳化物、硼化物甚至氧化物为基的纳米多层膜将成为进一步研究的方向.  相似文献   

3.
采用电弧离子镀技术,通过改变调制比沉积Cr/TiN纳米多层膜.利用扫描电子显微镜、原子力显微镜、X射线衍射仪、纳米压痕仪研究了调制比对Cr/TiN纳米多层膜表面形貌、微观结构以及力学性能的影响.结果表明,纳米多层膜表面致密、平滑均匀,膜层与基底结合良好,膜层综合力学性能优异,出现明显的纳米效应和界面效应.当调制比为2:...  相似文献   

4.
TaN/NbN纳米多层膜的力学性能与耐磨性   总被引:1,自引:0,他引:1  
采用反应溅射在多靶溅射仪上制备了调制周期小于73.2nm的一系列TaN/NbN纳米多层膜和TaN,NbN单层薄膜,并采用透射电子显微镜、显微硬度计和凹坑研磨仪研究了薄膜的微结构、力学性能和耐磨性。结果表明,具有成分周期变化的TaN/NbN纳米多层膜在其调制周期为2.3-17.0nm范围内产生硬度异常升高的超硬效应,最高硬度达到HK51.0GPa;磨损实验表明,TaN/NbN纳米多层膜耐磨性远高于TaN和NbN单层膜,其主要原因是调制结构中大量界面的存在,提高了薄膜的韧性。  相似文献   

5.
多层结构可以提高材料的强度、弹性模量和韧性。当尺寸减小到纳米量级时,性能将产生飞跃变化。首先探讨了多层结构提高强度、弹性模量和韧性等性能的基本原理,然后阐明了纳米尺度效应及理论,重点以过渡族金属氮化物ZrN纳米多层膜为例,研究了氮化物/金属(ZrN/Cu)纳米多层膜、ZrAIN纳米复合膜以及ZrAIN/Cu纳米多层膜的强韧化性能。结果表明,ZrN/Cu纳米多层膜的断裂韧性约是二元ZrN薄膜的2倍。当纳米多层膜的Cu单层厚度为2013131时,多层膜的K1C值最高。ZrAIN复合膜的断裂韧性与Al含量密切相关,当Al原子分数为23%时,薄膜的KIc值达3.17MPa·m^1/2,其硬度〉40Gpa,Al原子分数为47%的薄膜的K1C值则降低到1.13MPa·m…。,其硬度降低至17.1GPa。与z州/cu纳米多层膜和ZrAlN复合膜相比,以ZrAIN层和cu层为调制结构制备的ZrAlN/Cu纳米多层膜具有最高的硬度和最好的韧性。  相似文献   

6.
TiN存在高温氧化不良、固有脆性等缺点。将硅混合到TiN网络中,形成Ti-Si-N纳米多层膜,此纳米多层膜的硬度有了显著的提高。Ti-Si-N纳米多层膜是一类有着广阔应用前景的新材料,它在涂料、航空航天工业、电子器件等众多领域都有着广泛的应用。尤其在硬质合金刀具领域,较高的硬度、较好的耐磨性和韧性能够延长刀具的使用寿命。Ti-Si-N纳米多层膜制备方法有物理气相沉积和化学气相沉积两大类。物理气相沉积法是原材料在腔体的一端蒸发,然后沉积在腔体另一端较冷的基体上的方法。化学气相沉积在高温下发生化学反应,使钛、硅、氮原子发生重新组合,在基体表面生成Ti-Si-N纳米多层膜。与物理气相沉积方法相比,化学气相沉积方法需要的温度更高,并且化学反应中存在SiH 4等危险性气体,不适合大规模工业生产。Ti-Si-N纳米多层膜的性能主要受Si含量、调制周期和热处理温度等影响。随着Si含量的增加,纳米多层膜的性能先增强后减弱,Si含量在2.76%(质量分数)时,纳米多层膜硬度最大,摩擦系数最小。不同调制周期的多层膜性能优于单层膜,调制周期为0.7 nm时,纳米多层膜硬度达到28.7 GPa,弹性模量为301.1 GPa。随着退火温度的升高,纳米多层膜的附着性先增强后减弱,温度在800~950℃时,纳米多层膜硬度达到(49.7±0.83) GPa,结合力为83 N。纳米多层膜有超硬性,耐磨性和耐高温氧化性。对于纳米多层膜的超硬性,不同学者提出了不同的强化理论:交变应力场、模量差和Hall-petch强化理论;通过摩擦磨损实验可以判断纳米多层膜的磨损机制;在TiN中加入Si,生成的Ti-Si-N纳米多层膜具有耐高温氧化性。  相似文献   

7.
为了研究纳米多层薄膜的超硬效应,采用反应溅射法制备从1.4nm至27nm不同调制周期的一系列TiN/NbN纳米多层膜。高分辨电子显微镜参薄膜的调制结构和界面生长方式的观察发现,TiN/NbN膜具有很好的调制结构,并呈现以面心立方晶体结构穿过调制界面外延生长的多晶超晶格结构特征。显微硬度测量表明,TiN/NbN纳米多层膜存在随调制周期变化的超硬效应。薄膜在调制周期为8.3nm时达到HK39.0 Gpa的最高硬度。分析认为,两种不同晶格常数的晶体外延生长形成的交变应力场,对材料有强化作用,这是TiN/NbN纳米多层膜产生超硬效应的主要原因。  相似文献   

8.
静电自组装法制备的纳米多层膜的吸波性能   总被引:1,自引:0,他引:1  
配制了钡铁氧体溶胶和PSS(聚苯乙烯磺酸钠)溶胶,并利用静电自组装的方法在硅片上组装了纳米多层膜。利用紫外-可见分光光度计测出了单层最佳组装时问及每个双层的层厚。用SEM和XPS考察了纳米多层膜的表面形貌和铁元素的价态。对纳米多层膜进行吸波测试,结果显示:总层数为45个双层、总厚度为300nm左右的纳米多层膜有显著的吸波效应,在频率为8~18GHz范围内,最大吸波率达到16.85dB。基于量子理论探讨了纳米多层膜的吸波机理。  相似文献   

9.
纳米多层膜具有很多特殊性能,得到了广泛的应用。阐述了多种纳米多层膜的制备方法,主要包括电化学沉积法、物理和化学气相沉积法、溶胶-凝胶法、组装技术以及其它制备技术。大量研究和试验表明,不同的制备方法得到的多层膜具有其特殊的性能。  相似文献   

10.
W/Mo超晶格薄膜的微结构研究   总被引:4,自引:0,他引:4  
纳米多层膜因常出现物理或力学性能的异常而成为薄膜研究的热点之一。采用XRD和TEM技术研究了W/Mo纳米多层膜微结构。结果表明,W和Mo由于同为体心立方结构,且晶格常数相近,由它们交互重叠形成的纳米多层膜具有柱状晶穿过调制界面外延生长的结构特征,形成多晶超晶格结构。  相似文献   

11.
通过表面防护涂层技术制备综合力学性能与摩擦性能优异的涂层材料,对降低构件因碰撞摩擦磨损所引起的损伤失效问题十分重要。相较于单层膜结构防护涂层,金属纳米多层膜涂层材料由于其微观组织结构的独特性与可控性,表现出优异的服役特性,且其综合性能可通过结合新组元或界面调控得到进一步提高,因此该类材料受到了广泛关注。新颖的成分设计理念使得高熵合金具有独特的四大效应,即高熵效应、晶格畸变效应、迟滞扩散效应和性能鸡尾酒效应,进而呈现出良好的综合性能。因此,在传统的双金属纳米多层膜结构材料中引入高熵合金组元,形成金属/高熵合金纳米多层膜,有望突破传统金属纳米多层膜的性能局限,极大地提高多层膜结构材料的力学性能。从功能基元序构的视角,围绕近几年金属/高熵合金纳米多层膜的相关研究,首先介绍了其制备方法和工艺原理,针对功能基元微观结构特征,从晶粒形貌、界面结构、组元成分等方面进行了阐释,在此基础上论述了其力学行为以及相应的内在机制,并提出了调控金属/高熵合金纳米多层膜力学性能的优化策略,最后对金属/高熵合金纳米多层膜的未来研究方向和面临的挑战进行展望。  相似文献   

12.
利用真空蒸发技术生长了层厚为纳米数量级的n型导电苝系衍生物(全氟取代苝酰亚胺)/p型导电无金属酞菁异质复合多层膜,并测试了样品的紫外-可见吸收光谱。UV-Vis吸收谱实验结果表明,对应酞菁Q带吸收的主峰消失,次峰发生蓝移;全氟取代苝酰亚胺的吸收峰也发生蓝移,吸收带宽度扩展。结果表明,复合多层结构中苝与酞菁之间的电荷转移及纳米层厚导致的量子尺寸效应使分子中电子跃迁发生变化,导致吸收谱改变。  相似文献   

13.
《纳米科技》2008,5(2):1-3
湘潭大学材料与光电物理学院院长、湘潭大学量子工程与微纳能源技术研究所所长、湖南省凝聚态物理重点学科负责人钟建新教授是一位建树颇多的青年学者,其主要贡献包括:提出了半导体量子结构分区掺杂和无序一有序量子偶合系统的新概念;发现和阐明了量子扩散的两个重要普适规律;发现和阐明了分子束外延薄膜生长过程中表面纳米结构形态演化的一些重要规律和机制;发现了半导体纳米线的结构特征及其量子尺寸效应;发现了纳米结构在弯曲表面上生长和形态演化的重要机制;发现了准周期体系的能级涨落规律及其与随机矩阵理论和量子混沌理论的普遍联系;建立了准周期系统的量子动力学理论和适用于各种非周期系统的格林函数重正化群电子结构理论和方法;首先将随机矩阵理论应用到基因网络研究,发现了一个从基因微阵列数据中构造基因网络和识别功能基因模块的新方法等。他在国际知名学术刊物发表论文七十余篇,并多次在重大国际会议上做邀请报告,其中包括欧洲原子与分子计算中心讲习班特邀报告,美国纳米技术大会邀请报告,美国物理协会三月年会邀请报告,国际复合材料和纳米工程大会荣誉邀请报告,  相似文献   

14.
磁控溅射SiC/W纳米多层膜的微结构研究   总被引:2,自引:0,他引:2  
用磁控溅射法在Si基底上制备了不同调制波长的SiC/W纳米多层膜。利用小角度X射线衍射技术,详细研究了其中典型的多层膜的调制周期性。各子层的厚度及界面平整度等界面微观结构。结果表明:磁控溅射法制备的纳米多层膜具有较好的周期结构及陡峭的界面梯度,由衍射峰位置计算出的界面不均匀旗与子层厚度之比一般在5%以内。  相似文献   

15.
采用一种新型的离子束辅助非平衡反应磁控溅射设备制备了TiN/AlN纳米多层复合膜。采用XRD衍射、TEM、显微硬度计和干涉显微镜对TiN/AlN纳米多层膜的微结构和力学性能进行了表征。结果表明:TiN/AlN多层膜有良好的周期;调制结构影响薄膜的择优取向,薄膜整体表现出硬度增强的效果,硬度随调制周期的变化而变化并在调制周期为7、5nm时达到最大值。  相似文献   

16.
与传统块状材料相比,纳米多层膜因其小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,表现出独特的光、磁、电、力学和热学性能,可作为光电材料、光吸收材料、电磁波吸收材料、磁记录材料和低温连接材料,被广泛应用于光学器件、半导体、电磁防护、加工制造、表面防护以及电子封装等领域。纳米多层膜的微观结构与宏观物理力学性能具有强烈的尺度效应。由于受制备工艺所限,纳米多层膜内部存在的空位、位错等缺陷导致其在复杂服役环境中难以完全满足耐热、耐磨和耐腐蚀等要求,限制了纳米多层膜的发展。而在集成电路和芯片制造领域,纳米多层膜器件常处于偏离常温的苛刻工作环境中,具有较高表面自由能的亚稳态纳米多层膜在受热情况下会通过两相互扩散、层内脱离和界面结构变化等方式,趋向达到低能量的稳定结构,从而破坏了多层膜内部的微观结构,导致其熔点降低、超硬等特性消失或减弱。因此,研究纳米多层膜的微观结构演化、热稳定性及其失效机理,直接关系到纳米多层膜体系的服役寿命和可靠性。退火工艺作为一种常见的热处理手段,被广泛应用于消除金属内部的缺陷,从而达到改善材料性能的目的。对于在高温条件下工作的纳米多层膜,退火工艺也是延长其使用寿命的有效手段。目前退火工艺在纳米多层膜研究中的主要应用方向有:(1)通过改变退火温度、保温时间和冷却速度,改善纳米多层膜的性能;(2)通过提高退火上限温度,研究退火温度对纳米多层膜热稳定性的影响,获得保持微观结构稳定的临界温度。研究发现,适当的退火工艺可以细化纳米多层膜的晶粒结构,增加致密度,降低缺陷密度,诱导产生特殊结构,增强原子与位错的交互作用,从而提高薄膜的透光率,改善薄膜光学性能或磁学、电学和力学性能;(3)在一定温度区间内对纳米多层膜进行退火,通过TEM、XRD等手段观察多层膜内部界面的结构变化、原子扩散情况及新的物相生成情况,从而研究了纳米多层膜的结构稳定性、化学稳定性和力学稳定性。本文综述了退火工艺在纳米多层膜改性以及热稳定性研究中的应用进展,讨论了退火工艺对纳米多层膜性能(光学性能、磁学性能、电学性能、力学性能)的影响。重点介绍了退火处理温度对不互溶纳米多层膜体系热稳定性和组织演变的影响机理。最后指出了退火工艺在纳米多层膜研究中的进一步应用方向,以期对高强度、高热稳定性纳米多层膜的设计制备及在材料焊接/连接、集成电路、切削刀具、吸波涂层等领域的广泛应用提供重要的理论和应用价值。  相似文献   

17.
c-AlN的生长对AlN/(Ti,Al)N纳米多层膜力学性能的影响   总被引:4,自引:0,他引:4  
采用反应磁控溅射制备了具有不同调制周期的AlN/(Ti,Al)N纳米多层膜,研究了亚稳相立方氮化铝(c—AlN)在纳米多层膜中的生长条件及其对薄膜力学性能的影响.结果表明:在小调制周期下AlN以立方结构存在,并与(Ti,Al)N层形成同结构共格外延生长,使纳米多层膜产生较大的品格暗变.与此相应,AlN/(Ti,Al)N纳米多层膜硬度和弹性模量随调制周期的减小呈单调上升的趋势,当调制周期小于8~10nm时其增速明显增大,并在调制周期为1.3nm时达到最高硬度29.0GPa和最高弹性模量383GPa,AlN/(Ti,Al)N纳米多层膜的硬度和弹性模量在小调制周期时的升高与亚稳相c—AlN的产生并和(Ti,Al)N形成共格结构有关。  相似文献   

18.
纳米多层膜的界面微结构与超硬度   总被引:2,自引:0,他引:2  
徐益  钟富平  黄楠 《功能材料》2004,35(5):541-544
综述了近年来纳米多层膜界面微结构及超硬度效应的研究进展,表明纳米多层膜硬化的主要机制是位错镜像力及hall-petch模型,超模效应及晶格错配引起的交变应变场对硬化起次要作用。  相似文献   

19.
纳米多层膜的研究现状   总被引:1,自引:1,他引:0  
张山山  王锦标  苏永要 《材料导报》2014,28(21):147-154
纳米多层膜是在单层膜与复合膜的基础上发展起来的一种新型薄膜,它被广泛应用于机械加工、航空航天、能源等领域,作为结构材料或功能材料都具有良好的发展前景。介绍了近十几年纳米多层膜的研究状况,主要从多层膜体系、制备技术、多层膜的性能以及多层膜的表征方法4个方面对纳米多层膜进行了综述,同时对纳米多层膜的超硬机制、纳米多层膜未来的研究方向和应用前景进行了分析。  相似文献   

20.
超硬纳米多层膜致硬机理研究   总被引:6,自引:0,他引:6  
本文综述了近年来纳米多层膜界面微结构及超硬效应的研究进展, 表明纳米多层膜硬化的主要机制和位错的运动相关, 晶格错配引起的交变应变场对硬化起次要作用, 模量差异致硬起主要作用. 指出了超硬纳米多层膜研究所存在的问题以及未来的发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号