共查询到20条相似文献,搜索用时 15 毫秒
1.
The legs of Drosophila are divided into segments along the proximodistal axis by flexible structures called joints. The separation between segments is already visible in the imaginal disc as folds of the epithelium, and cells at segment boundaries have different morphology during pupal development. We find that Notch is locally activated in distal cells of each segment, as demonstrated by the restricted expression of the Enhancer of split mbeta gene, and is required for the formation of normal joints. The genes fringe, Delta, Serrate and Suppressor of Hairless, also participate in Notch function during leg development, and their expression is localised within the leg segments with respect to segment boundaries. The failure to form joints when Notch signalling is compromised leads to shortened legs, suggesting that the correct specification of segment boundaries is critical for normal leg growth. The requirement for Notch during leg development resembles that seen during somite formation in vertebrates and at the dorsal ventral boundary of the wing, suggesting that the creation of boundaries of gene expression through Notch activation plays a conserved role in co-ordinating growth and patterning. 相似文献
2.
The concept of second messenger signalling originated from the discovery of the role of cyclic AMP, although it is now known that cytosolic calcium [Ca2+]i mediates numerous signalling pathways and plays an equally vital role in many cellular events. In the last few years there has been a great deal of interest in the substantial molecular and functional diversity of mammalian adenylyl cyclases (ACs). Although AC was viewed as a generic activity, which was either stimulated or inhibited by stimulatory or inhibitory receptors, respectively, acting via alpha-subunits of trimeric GTP-regulatory proteins, the recent cloning of nine full-length isoforms, which significantly differ in their regulatory properties and tissue distributions, has revealed an unexpected level of complex regulation. In fact, each AC may integrate convergent inputs from many distinct signal-generating pathways. The nine isoforms can be divided into four distinct families, which reflect their distinct patterns of regulation by betagamma subunits of G-proteins, protein kinase C (PKC) and Ca2+. The mechanisms of regulation are often highly synergistic or conditional, suggesting a function of ACs as coincident detectors. Since all nine isoforms can be regulated either directly or indirectly by Ca2+ or PKC, a complex range of responses is possible. The Ca2+ concentration that stimulates the major ACs in brain has been found to inhibit AC activity in a number of peripheral tissues and cell lines. The purpose of this article is to review many of the important aspects about the distinct regulatory properties and cellular distribution of Ca2+-regulated ACs. Indeed, the notion that Ca2+ and cAMP are "synarchic" messengers acting in concert to regulate cellular activity was formally proposed some time ago. Here, we will focus on acute interactions between Ca2+ and cAMP and attempt to understand how AC activities can be regulated by discrete, physiological [Ca2+]i rises in intact cells. All Ca2+-regulated isoforms have characteristic distribution patterns in the brain. Also discussed are emerging insights on the temporal and spatial regulation of Ca2+- and cAMP-regulated pathways which may enable cell stimuli to elicit specific responses. 相似文献
3.
The signaling pathway involved in protein kinase C (PKC) activation and role of PKC isoforms in lipopolysaccharide (LPS)-induced nitric oxide (NO) release were studied in primary cerebellar astrocytes. LPS caused a dose- and time-dependent increase in NO release and inducible NO synthase (iNOS) expression. The tyrosine kinase inhibitor, genestein, the phosphatidylcholine-phospholipase C inhibitor, D609, and the phosphatidate phosphodrolase inhibitor, propranolol, attenuated the LPS effects, whereas the PI-PLC inhibitor, U73122, had no effect. The PKC inhibitors (staurosporine, Ro 31-8220, Go 6976, and calphostin C) also inhibited LPS-induced NO release and iNOS expression. However, long term (24 h) pretreatment of cells with 12-O-tetradecanoyl phorbol-13-acetate (TPA) did not affect the LPS response. Previous results have shown that TPA-induced translocation, but not down-regulation, of PKCeta occurs in astrocytes (Chen, C. C., and Chen, W. C. (1996) Glia 17, 63-71), suggesting possible involvement of PKCeta in LPS-mediated effects. Treatment with antisense oligonucleotides for PKCeta or delta, another isoform abundantly expressed in astrocytes, demonstrated the involvement of PKCeta, but not delta, in LPS-mediated effects. Stimulation of cells for 1 h with LPS caused activation of nuclear factor (NF)-kB in the nuclei as detected by the formation of a NF-kB-specific DNA-protein complex; this effect was inhibited by genestein, D609, propranolol, or Ro 31-8220 or by PKCeta antisense oligonucleotides, but not by long term TPA treatment. These data suggest that in astrocytes, LPS might activate phosphatidylcholine-phospholipase C and phosphatidylcholine-phospholipase D through an upstream protein tyrosine kinase to induce PKC activation. Of the PKC isoforms present in these cells, only activation of PKCeta by LPS resulted in the stimulation of NF-kB-specific DNA-protein binding and then initiated the iNOS expression and NO release. This is further evidence demonstrating that different members of the PKC family within a single cell are involved in specific physiological responses. 相似文献
4.
5.
6.
In Saccharomyces cerevisiae, the phosphatidylinositol kinase homologue Tor2 controls the cell-cycle-dependent organisation of the actin cytoskeleton by activating the small GTPase Rho1 via the exchange factor Rom2 [1,2]. Four Rho1 effectors are known, protein kinase C 1 (Pkc1), the formin-family protein Bni1, the glucan synthase Fks and the signalling protein Skn7 [2,3]. Rho1 has been suggested to signal to the actin cytoskeleton via Bni1 and Pkc1; rho1 mutants have never been shown to have defects in actin organisation, however [2,4]. We have further investigated the role of Rho1 in controlling actin organisation and have analysed which of the Rho1 effectors mediates Tor2 signalling to the actin cytoskeleton. We show that some, but not all, rho1 temperature-sensitive (rho1ts) mutants arrest growth with a disorganised actin cytoskeleton. Both the growth defect and the actin organisation defect of the rho1-2ts mutant were suppressed by upregulation of Pkc1 but not by upregulation of Bni1, Fks or Skn7. Overexpression of Pkc1, but not overexpression of Bni1, Fks or Skn7, also rescued a tor2ts mutant, and deletion of BNI1 or SKN7 did not prevent the suppression of the tor2ts mutation by overexpressed Rom2. Furthermore, overexpression of the Pkc1-controlled mitogen-activated protein (MAP) kinase Mpk1 suppressed the actin defect of tor2ts and rho1-2ts mutants. Thus, Tor2 signals to the actin cytoskeleton via Rho1, Pkc1 and the cell integrity MAP kinase cascade. 相似文献
7.
8.
A Eckert H F?rstl H Hartmann C Czech U M?nning K Beyreuther WE Müller 《Canadian Metallurgical Quarterly》1995,6(8):1199-1202
The amplifying effect of beta-amyloid fragment 25-35 (beta A25-35) on the mitogen-induced rise of free intracellular calcium in circulating lymphocytes was strongly reduced in 24 patients with Alzheimer's disease when compared with elderly, non-demented controls. Low beta-amyloid responses were significantly correlated with the presence of the apolipoprotein E epsilon 4 allele, suggesting a dose effect. 相似文献
9.
BJ Mehrara RJ Mackool JG McCarthy GK Gittes MT Longaker 《Canadian Metallurgical Quarterly》1998,102(6):1805-17; discussion 1818-20
Craniosynostosis is a common disorder with an unknown etiology. Recent genetic mapping studies have demonstrated a strong linkage between several familial craniosynostotic syndromes and mutations in fibroblast growth factor receptor 1 (FGF-R1) and 2 (FGF-R2). The purpose of this experiment was to investigate by immunohistochemistry the protein production of these receptors as well as of their most prevalent ligand, basic fibroblast growth factor (bFGF), before, during, and after sutural fusion in rat cranial sutures. The posterior frontal (normally fuses between postnatal days 12 and 22) and sagittal (remains patent) sutures of embryonic day 20 and neonatal days 6, 12, 17, 22, and 62 (n = 3 per group) were harvested, fixed, and decalcified. Five-micrometer sections were stained with polyclonal antibodies against bFGF, FGF-R1, and FGF-R2, and patterns of immunohistochemical staining were assessed by independent reviewers. Our results indicate that increased bFGF production correlates temporally with suture fusion, with increased staining of the dura underneath the fusing suture prior to fusion followed by increased staining within osteoblasts and sutural cells during fusion. FGF-R1 and, to a lesser extent FGF-R2 immunostaining revealed a different pattern of localization with increased immunostaining within the patent sagittal suture at these time points. These results implicate bFGF in the regulation of sutural fusion and may imply autoregulatory mechanisms in fibroblast growth factor receptor expression. 相似文献
10.
This cohort study of 725 women examined the health, occupational, and social factors that contribute to quitting work in two transnational electronics maquiladoras (assembly plants) in Tijuana, Mexico. The estimated cumulative probabilities of quitting were 68% and 81% by 1 and 2 years of employment. After adjusting for other factors, women who had a history of smoking or surgery and those who returned to work after a paid leave due to illness were more likely to quit. In contrast, women with a history of chronic illness had lower quitting rates. The nationality of the company and the work shift also significantly influenced quitting rates, but demographic characteristics and health care visits did not have a significant effect. Women selectively leave maquiladora employment, often due to health-related events. The healthy worker effect is difficult to measure in a mobile population with high turnover. 相似文献
11.
12.
H Schmal TP Shanley ML Jones HP Friedl PA Ward 《Canadian Metallurgical Quarterly》1996,156(5):1963-1972
Macrophage inflammatory protein-2 (MIP-2) is a C-X-C chemokine that possesses chemotactic activity for neutrophils. Rat MIP-2 was cloned and expressed as a 7.9-kDa peptide that exhibited dose-dependent neutrophil chemotactic activity at concentrations from 10 to 250 nM. Rabbit polyclonal Ab to the 7.9-kDa peptide showed reactivity by western blot analysis and suppressed its in vitro chemotactic activity. Cross-desensitization chemotaxis experiments suggested that the chemotactic responses elicited by MIP-2 and the related chemokine, cytokine-induced neutrophil chemoattractant, may be mediated through a common receptor. Also, chemotactic responses to human GRO-alpha were blocked by exposure of human neutrophils to either GRO-alpha or rat MIP-2, suggesting conservation of this receptor-mediated response. After LPS instillation into rat lung, mRNA for MIP-2 was up-regulated in a time-dependent manner, peaking at 6 h. MIP-2 protein was detected in bronchoalveolar lavage fluids of these animals and a significant amount of chemotactic activity present in these fluids was attributed to MIP-2. On the basis of intrapulmonary instillation of Ab to MIP-2, neutrophil accumulation in lungs after airway instillation of LPS was found to be MIP-2-dependent. These data indicate that MIP-2 plays a significant role in LPS-induced inflammatory response in rat lungs and is required for the full recruitment of neutrophils. 相似文献
13.
D Meyer zu Heringdorf H Lass R Alemany KT Laser E Neumann C Zhang M Schmidt U Rauen KH Jakobs CJ van Koppen 《Canadian Metallurgical Quarterly》1998,17(10):2830-2837
Formation of inositol 1,4,5-trisphosphate (IP3) by phospholipase C (PLC) with subsequent release of Ca2+ from intracellular stores, is one of the major Ca2+ signalling pathways triggered by G-protein-coupled receptors (GPCRs). However, in a large number of cellular systems, Ca2+ mobilization by GPCRs apparently occurs independently of the PLC-IP3 pathway, mediated by an as yet unknown mechanism. The present study investigated whether sphingosine kinase activation, leading to production of sphingosine-1-phosphate (SPP), is involved in GPCR-mediated Ca2+ signalling as proposed for platelet-derived growth factor and FcepsilonRI antigen receptors. Inhibition of sphingosine kinase by DL-threo-dihydrosphingosine and N,N-dimethylsphingosine markedly inhibited [Ca2+]i increases elicited by m2 and m3 muscarinic acetylcholine receptors (mAChRs) expressed in HEK-293 cells without affecting mAChR-induced PLC stimulation. Activation of mAChRs rapidly and transiently stimulated production of SPP in HEK-293 cells. Finally, intracellular injection of SPP induced a rapid and transient Ca2+ mobilization in HEK-293 cells which was not antagonized by heparin. We conclude that mAChRs utilize the sphingosine kinase-SPP pathway in addition to PLC-IP3 to mediate Ca2+ mobilization. As Ca2+ signalling by various, but not all, GPCRs in different cell types was likewise attenuated by the sphingosine kinase inhibitors, we suggest a general role for sphingosine kinase, besides PLC, in mediation of GPCR-induced Ca2+ signalling. 相似文献
14.
TD Nguyen MW Moody M Steinhoff C Okolo DS Koh NW Bunnett 《Canadian Metallurgical Quarterly》1999,103(2):261-269
Proteinase-activated receptor-2 (PAR-2) is a G protein-coupled receptor that is cleaved by trypsin within the NH2-terminus, exposing a tethered ligand that binds and activates the receptor. We examined the secretory effects of trypsin, mediated through PAR-2, on well-differentiated nontransformed dog pancreatic duct epithelial cells (PDEC). Trypsin and activating peptide (AP or SLIGRL-NH2, corresponding to the PAR-2 tethered ligand) stimulated both an 125I- efflux inhibited by Ca2+-activated Cl- channel inhibitors and a 86Rb+ efflux inhibited by a Ca2+-activated K+ channel inhibitor. The reverse peptide (LRGILS-NH2) and inhibited trypsin were inactive. Thrombin had no effect, suggesting absence of PAR-1, PAR-3, or PAR-4. In Ussing chambers, trypsin and AP stimulated a short-circuit current from the basolateral, but not apical, surface of PDEC monolayers. In monolayers permeabilized basolaterally or apically with nystatin, AP activated apical Cl- and basolateral K+ conductances. PAR-2 agonists increased [Ca2+]i in PDEC, and the calcium chelator BAPTA inhibited the secretory effects of AP. PAR-2 expression on dog pancreatic ducts and PDEC was verified by immunofluorescence. Thus, trypsin interacts with basolateral PAR-2 to increase [Ca2+]i and activate ion channels in PDEC. In pancreatitis, when trypsinogen is prematurely activated, PAR-2-mediated ductal secretion may promote clearance of toxins and debris. 相似文献
15.
G Ambrosini J Plescia KC Chu KA High DC Altieri 《Canadian Metallurgical Quarterly》1997,272(13):8340-8345
Binding of factor Xa to human umbilical vein endothelial cells (HUVEC) is contributed by effector cell protease receptor-1 (EPR-1). The structural requirements of this recognition were investigated. Factor Xa or catalytically inactive 5-dimethylaminonaphthalene-1sulfonyl (dansyl) Glu-Gly-Arg-(DEGR)-chloromethylketone-factor Xa bound indistinguishably to HUVEC and EPR-1 transfectants, and inhibited equally well the binding of 125I-factor Xa to these cells. Similarly, factor Xa active site inhibitors TAP or NAP5 did not reduce ligand binding to EPR-1. A factor X peptide duplicating the inter-EGF sequence Leu83-Phe84-Thr85-Arg86-Lys87-Leu88- (Gly) inhibited factor V/Va-independent prothrombin activation by HUVEC and blocked binding of 125I-factor Xa to these cells in a dose-dependent manner (IC50 approximately 20-40 microM). In contrast, none of the other factor X peptides tested or a control peptide with the inter-EGF sequence in scrambled order was effective. A recombinant chimeric molecule expressing the factor X sequence Leu83-Leu88 within a factor IX backbone inhibited binding of 125I-factor Xa to HUVEC and EPR-1 transfectants in a dose-dependent fashion, while recombinant factor IX or plasma IXa had no effect. An antibody generated against the factor X peptide 83-88, and designated JC15, inhibited 125I-factor Xa binding to HUVEC. The JC15 antibody bound to factor Xa and the recombinant IX/X83-88 chimera in a concentration dependent manner, while no specific reactivity with factors X or IXa was observed. Furthermore, binding of 125I-factor Xa to immobilized JC15 was inhibited by molar excess of unlabeled factor Xa, but not by comparable concentrations of factors X or IXa. These findings identify the inter-EGF sequence Leu83-Leu88 in factor Xa as a novel recognition site for EPR-1, and suggest its potential role as a protease activation-dependent neo-epitope. This interacting motif may help elucidate the contribution of factor Xa to cellular assembly of coagulation and vascular injury. 相似文献
16.
Extracellular lysophosphatidic acid (LPA) produces diverse cellular responses in many cell types. Recent reports of several molecularly distinct G protein-coupled receptors have raised the possibility that the responses to LPA stimulation could be mediated by the combination of several uni-functional receptors. To address this issue, we analyzed one receptor encoded by ventricular zone gene-1 (vzg-1) (also referred to as lpA1/edg-2) by using heterologous expression in a neuronal and nonneuronal cell line. VZG-1 expression was necessary and sufficient in mediating multiple effects of LPA: [3H]-LPA binding, G protein activation, stress fiber formation, neurite retraction, serum response element activation, and increased DNA synthesis. These results demonstrate that a single receptor, encoded by vzg-1, can activate multiple LPA-dependent responses in cells from distinct tissue lineages. 相似文献
17.
18.
The results of experiments on small populations of Dictyostelium discoideum, directed towards the measurement of the development in time of the competence of the cells to signal autonomously, are reported. This competence is quantified by X3, the intrinsic probability that a given cell may turn autonomous. The data show an early exponential growth in time of X3, followed by saturation. The saturation value depends on the population size suggesting that the differentiation is a co-operative phenomenon. The differentiation of autonomous cells starts roughly 7 h after the removal of food and saturates within 21 h. 相似文献
19.
M Molino PN Raghunath A Kuo M Ahuja JA Hoxie LF Brass ES Barnathan 《Canadian Metallurgical Quarterly》1998,18(5):825-832
The protease-activated family of G protein-coupled receptors includes PAR-1 and PAR-3, which are activated by thrombin, and PAR-2, which is activated by trypsin and tryptase. PAR-2 has recently been shown to be expressed in human endothelial cells. In the present studies, we have examined the expression of PAR-2 in other cells, particularly vascular smooth muscle, and tested whether the receptors are functional. The results show that PAR-2 is present in human aorta and coronary artery smooth muscle cells, as well as in arteries traversing the walls of the small intestine. It was also detected in human keratinocytes, sweat glands, intestinal smooth muscle, and intestinal epithelium, but not at all in myocardial smooth muscle and only inconsistently in intestinal veins and venules. Activation of aortic smooth muscle cells in culture with PAR-2 peptide agonists caused a transient increase in the cytosolic Ca2+ concentration. In contrast, PAR-2 mRNA could not be detected in saphenous vein smooth muscle cells, and the same cells placed in culture showed little, if any, response to the PAR-2 agonist peptides. These observations show that PAR-2 is widely distributed in human vascular smooth muscle, particularly in arteries. However, this is not a universal finding and at least some venous smooth muscle cells, including those in saphenous veins, apparently do not express the receptor in detectable amounts. 相似文献
20.
In addition to generating cells with non-MHC-restricted cytotoxic activity that is characteristic of lymphokine-activated killer (LAK) cells, in vitro cultures of lymphocytes with relatively high concentrations of IL-2 generate cells that simultaneously exhibit two distinct types of suppressor activities: veto, the ability of cells to specifically suppress generation of allo-CTL against their own histocompatibility Ags; and natural suppression, the ability of these same cells to nonspecifically suppress the generation of allo-CTL against both their own and unrelated cell surface Ags. In contrast to veto, which is known to require cell-cell contact between veto-active cells and precursors of CTL, natural suppression is known to be mediated by soluble factors. To identify and characterize suppressor factors that might mediate the natural suppressor activity of IL-2-activated lymphocytes, murine spleen cells were cultured with 1000 U/ml IL-2, and, after varying periods of incubation, their LAK cytolytic activity and natural suppressor activity was determined and cell supernatants were collected and tested for their effects on mixed lymphocyte culture-induced generation of allo-CTL. Like the IL-2-activated lymphocytes themselves, supernatants of these cells nonspecifically inhibited mixed lymphocyte culture-induced generation of allo-CTL. Rabbit anti-TGF-beta specifically neutralized the suppressive effects of both LAK cell supernatants and the IL-2-activated lymphocytes themselves. These findings indicate that TGF-beta is the primary mediator of the natural suppressor activity of IL-2-activated lymphocytes. 相似文献