首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The activation of phagocytes by the lipid A moiety of LPS has been implicated in the pathogenesis of Gram-negative sepsis. While two LPS receptors, CD14 and CD11/CD18, have been associated with cell signaling, details of the LPS signal transduction cascade remain obscure. CD14, which exists as a GPI-anchored and a soluble protein, lacks cytoplasmic-signaling domains, suggesting that an ancillary molecule is required to activate cells. The CD11/CD18 integrins are transmembrane proteins. Like CD14, they are capable of mediating LPS-induced cellular activation when expressed on the surface of hamster fibroblasts Chinese hamster ovary (CHO)-K1. The observation that a cytoplasmic deletion mutant is still capable of activating transfected CHO-K1 argues that CD11/CD18 also utilizes an associated signal transducer. We sought to identify further similarities between the signaling systems utilized by CD14 and CD11/CD18. LPS-binding protein, which transfers LPS to CD14, enhanced both LPS-induced cellular activation and binding of Gram-negative bacteria in CD11/CD18-transfected CHO-K1, thus implying that LPS-binding protein can also transfer LPS to CD11/CD18. When synthetic lipid A analogues were analyzed for their ability to function as LPS agonists, or antagonists, in the CHO transfectants, we found the effects were identical regardless of which LPS receptor was expressed. This supports the hypothesis that a receptor distinct from CD14 and CD11/CD18 is responsible for discriminating between the lipid A of LPS and the LPS antagonists. We propose that this receptor, which is the target of the LPS antagonists, functions as the true signal transducer in LPS-induced cellular activation for both CD14 and CD11/CD18.  相似文献   

3.
CD14 is a glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein which functions as a receptor on myeloid cells for ligands derived from microbial pathogens such as lipopolysaccharide (LPS). We have studied the importance of the GPI tail of CD14 in signalling with the promonocytic cell line THP-1 expressing recombinant CD14 in a GPI-anchored form (THP1-wtCD14 cells) or in a transmembrane form (THP1-tmCD14). We found that, like other GPI-anchored molecules, GPI-anchored CD14 was recovered mainly from a Triton X-100-insoluble fraction, whereas transmembrane CD14 was fully soluble in Triton X-100. LPS induced cell activation of THP1-wtCD14 and of THP1-tmCD14 (protein tyrosine kinase phosphorylation, NF-kappaB activation, and cytokine production) in a very similar manner. However, anti-CD14 antibody-induced cross-linking caused a rapid calcium mobilization signal only in GPI-anchored CD14 cells. Studies with pharmacologic inhibitors of intracellular signalling events implicate phospholipase C and protein tyrosine kinases in the genesis of this antibody-induced calcium signal. Our results suggest that GPI anchoring and CD14 targeting to glycolipid-rich membrane microdomains are not required for LPS-mediated myeloid cell activation. GPI anchoring may however be important for other signalling functions, such as those events reflected by antibody cross-linking.  相似文献   

4.
The effect of glucocorticoid (GC) treatment on expression and release of the monocyte cell surface LPS receptor Ag CD14 was studied in vivo and in vitro. In patients with acute inflammatory diseases receiving GC pulse therapy serum concentrations of soluble CD14 and CD14 expression by peripheral blood monocytes decreased significantly. The LPS-binding capacity correlated positively with the amount of cell surface CD14 by human blood monocytes. In vitro, a time- and dose-dependent effect of GC preparations on monocyte membrane and soluble CD14 by cultured peripheral blood monocytes was found. Incubation with 2 x 10(-8) M prednisolone down-regulated cell surface CD14 after 72 h, and 2 x 10(-7) M suppressed CD14 expression even after 24 h. Prednisolone also decreased release of the soluble CD14 Ag, where a 10-fold higher GC concentration was required for a significant suppression compared with membrane CD14 during culture. Expression of other monocyte membrane Ags were either unchanged (CD33, CD35), diminished (CD13, CD89), or increased (CD32) by GC, indicating no general down-modulation of cell surface Ag expression. Preincubation with glucocorticoids for 24 h significantly down-regulated CD14 expression during subsequent steroid-free culture for at least 7 days. In cultured monocytes, the LPS-induced increase of membrane and soluble CD14 was markedly but not completely inhibited by prednisolone. Therefore, GC treatment suppresses the up-regulation of the LPS receptor during endotoxin challenge, and likewise, the IL-1 secretion after LPS stimulus was significantly diminished. Taken together, the suppression of the monocytic cell surface and soluble endotoxin receptor CD14 by GC may contribute to the increased risk of infections in patients undergoing steroid therapy.  相似文献   

5.
We established previously that lipopolysaccharide (LPS) can induce the expression of LPS-binding sites on bone marrow cells (BMC). We now report that staurosporine (STP), a glycosylated indolocarbazole alkaloid with potent inhibitory activity for various protein kinases, can induce the same effect. With both agents, the newly expressed LPS receptor was found to be CD14. The STP-induced effect was independent of its protein kinase inhibitory activity because several other protein kinase inhibitors, such as the indolocarbazole K-252a, the bisindolylmaleimide RO-31-8220, the perylenequinone calphostin C, and the isoquinolinesulfonamide H7, did not induce CD14 expression. The observation that the STP analog K-252a with an identical polyaromatic aglycon moiety was inactive yet the analog UCN-01 with an identical glycoside ring was active suggests that the induction of CD14 expression is triggered by the sugar moiety of STP. Three lines of evidence show that the mechanism of CD14 expression induced by STP differs from that induced by LPS: (i) unlike LPS, STP can stimulate BMC from LPS-unresponsive C3H/HeJ mice, (ii) LPS and STP effects are additive at a saturating dose of LPS, and (iii) the protein kinase inhibitor K-252a inhibits the LPS-induced but not STP-induced stimulation. Therefore, our findings show that both a protein kinase-dependent (LPS-induced) and a protein kinase-independent (STP-induced) mechanism can lead to the expression of the LPS receptor CD14 on BMC. We also found that the STP-induced stimulation of BMC is modulated by cyclosporin A, vinblastine, and verapamil. This observation may suggest that the inducible effect of STP could be initiated by its interaction with P-glycoprotein, a membrane pump with drug efflux function that plays a critical role in the multidrug resistance of cancer cells.  相似文献   

6.
LPS (endotoxin) and proinflammatory cytokines (IL-6, IL-1, and TNF-alpha) are potent inducers of acute phase proteins (APP). Since LPS induces high levels of these cytokines after its interaction with CD14, a protein expressed on the surface of monocytes and neutrophils, it has been assumed that CD14 mediates the LPS induction of APP expression. To test this hypothesis, CD14-deficient and control mice were injected with low doses of LPS, and the expression of several APP that are normally up-regulated by LPS was measured. CD14-deficient mice showed no alteration in the induction of APP, including serum amyloid A, LPS-binding protein, fibrinogen, or ceruloplasmin; in contrast, C3H/HeJ mice, which carry a mutation in the Lps gene, do not up-regulate the expression of these proteins. These studies show that the up-regulation of APP by LPS utilizes a non-CD14 receptor and requires a functional Lps gene.  相似文献   

7.
Although bacterial lipopolysaccharides (LPS) and several other microbial agonists can bind to mCD14 (membrane CD14), a cell-surface receptor found principally on monocytes and neutrophils, host-derived mCD14 ligands are poorly defined. We report here that phosphatidylinositol (PtdIns), phosphatidylinositol-4-phosphate, and other phosphatidylinositides can bind to mCD14. Phosphatidylserine (PS), another anionic glycerophospholipid, binds to mCD14 with lower apparent affinity than does PtdIns. LPS-binding protein, a lipid transfer protein found in serum, facilitates both PS- and PtdIns-mCD14 binding. PtdIns binding to mCD14 can be blocked by anti-CD14 monoclonal antibodies that inhibit LPS-mCD14 binding, and PtdIns can inhibit both LPS-mCD14 binding and LPS-induced responses in monocytes. Serum-equilibrated PtdIns also binds to mCD14-expressing cells, raising the possibility that endogenous PtdIns may modulate cellular responses to LPS and other mCD14 ligands in vivo.  相似文献   

8.
LPS-binding proteins in plasma play an important role in modifying LPS toxicity. Significant properties have already been attributed to the LPS-binding protein (LBP). It accelerates LPS toxicity as well as incorporation into high-density lipoproteins, leading to neutralization of LPS in serum. A search for other LPS-binding components in serum, using LPS-coated magnetic beads, revealed a new LPS-binding protein. N-terminal microsequencing identified this protein as serum amyloid P component (SAP). Purified SAP bound to smooth and rough types of LPS via the lipid A part. SAP inhibited the binding of FITC-labeled ReLPS (LPS from Salmonella minnesota strain R595) to human monocytes and the ReLPS-induced priming of the oxidative burst of human neutrophils only in the presence of low concentrations of LBP. In search for the LPS binding site of SAP, we found that pep27-39, a 13-mer peptide consisting of amino acids 27-39 of SAP, competitively inhibited the binding of LPS to SAP. In addition, pep27-39 significantly inhibited ReLPS-induced responses in phagocytes in the presence of serum, as well as in human whole blood. Carboxamidomethylated pep27-39 showed an even more pronounced reduction of the ReLPS-induced priming of phagocytes in human blood. Performing gel filtration of FITC-labeled ReLPS incubated with soluble CD14, we showed that SAP could not prevent binding of LPS to soluble CD14, in contrast to pep27-39. The ability of pep27-39 to antagonize specifically the effects of LPS in the complex environment of human blood suggests that pep27-39 may be a novel therapeutic agent in the treatment of gram-negative sepsis.  相似文献   

9.
Host defense against microorganisms involves proteins that bind specifically to bacterial endotoxins (LPS), causing different cellular effects. Although LPS-binding protein (LBP) can enhance LPS activities, while bactericidal/permeability-increasing protein (BPI) and Limulus anti-LPS factor (LALF) neutralize LPS, it has been proposed that their LPS-binding domains possess a similar structure. Here, we provide evidence that the LBP/LPS-binding domain is, as in the LALF structure, solvent exposed and therefore available for LPS binding. Our investigations into the activity of LPS-binding domains of different LPS-binding proteins, in the context of LBP, provide the first functional analysis of these domains in a whole protein. We constructed domain exchange hybrid proteins by substituting 12 amino acids of the LBP/LPS-binding domain with those of BPI and LALF and expressed them in Chinese hamster ovary cells. Although discrete point mutations within the LPS-binding domain of LBP disrupted its specific functions, the hybrid proteins were still able to bind LPS and, in addition, retained the wild-type LBP activity of enhancing LPS priming for FMLP-induced oxygen radical production by neutrophils and transferring LPS aggregates to CD14. Although BPI and LALF display opposite activities to LBP, and LALF does not share any sequence homology with LBP, our data provide strong evidence that LBP, BPI, and LALF possess a solvent-exposed, interchangeable LPS binding motif that is functionally independent of LPS transport or neutralization.  相似文献   

10.
The glycoprotein CD14 acts as a receptor for lipopolysaccharide (LPS), either when anchored in the myeloid cell membrane (mCD14) or as a soluble molecule (sCD14) in serum. sCD14-LPS complexes activate cells devoid of mCD14. However, the role of sCD14 independent of LPS is unknown. Therefore, the effect of sCD14 on monocyte functions was investigated in the monocytic cell lines THP1 and Mono Mac 6 and in fresh human monocytes. Under serum-free conditions, endotoxin-free human recombinant sCD14(1-348), (rsCD14(1-348)) induced tumor necrosis factor alpha (TNF-alpha). The TNF-alpha effect was stronger in THP1 cells than in Mono Mac 6 cells or monocytes. It was dose dependent, with a maximum at 1 microg/ml, and time dependent, with a maximum after 2 h. sCD14 purified from urine had the same cytokine-activating capacity. In contrast, C-terminally truncated rsCD14(1-152) was inactive. The rsCD14 effect was not due to LPS contamination, since it was resistant to polymyxin and lipid IVa but sensitive to heat and trypsin. The rsCD14-induced cytokine induction was blocked by preincubation of rsCD14 with a monoclonal anti-CD14 antibody that did not recognize the LPS-binding site. Release of the TNF-alpha disappeared upon pretreatment of rsCD14 in 50% plasma or in complete, heat-inactivated or sCD14-depleted serum. Moreover, cytokine production was no longer observed when rsCD14 was pretreated with thrombocytes. The thrombocyte effect was dose and time dependent. In conclusion, sCD14 is able to activate myeloid cells, and the effect is prevented by the presence of plasma, serum, or thrombocytes.  相似文献   

11.
An invading pathogen must be held in check by the innate immune system until a specific immune response can be mounted. In the case of Gram-negative bacteria, the principal stimulator of the innate immune system is lipopolysaccharide (LPS), a component of the bacterial outer membrane. In vitro, LPS is bound by lipopolysaccharide-binding protein (LBP) and transferred to CD14--the LPS receptor on the macrophage surface--or to high-density lipoprotein (HDL) particles. Transfer to CD14 triggers an inflammatory response which is crucial for keeping an infection under control. Here we investigate how LBP functions in vivo by using LBP-deficient mice. Surprisingly, we find that LBP is not required in vivo for the clearance of LPS from the circulation, but is essential for the rapid induction of an inflammatory response by small amounts of LPS or Gram-negative bacteria and for survival of an intraperitoneal Salmonella infection.  相似文献   

12.
Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is an integral membrane protein which has transforming potential and is necessary but not sufficient for B-cell immortalization by EBV. LMP1 molecules aggregate in the plasma membrane and recruit tumour necrosis factor receptor (TNF-R) -associated factors (TRAFs) which are presumably involved in the signalling cascade leading to NF-kappaB activation by LMP1. Comparable activities are mediated by CD40 and other members of the TNF-R family, which implies that LMP1 could function as a receptor. LMP1 lacks extended extracellular domains similar to beta-adrenergic receptors but, in contrast, it also lacks any motifs involved in ligand binding. By using LMP1 mutants which can be oligomerized at will, we show that the function of LMP1 in 293 cells and B cells is solely dependent on oligomerization of its carboxy-terminus. Biochemically, oligomerization is an intrinsic property of the transmembrane domain of wild-type LMP1 and causes a constitutive phenotype which can be conferred to the signalling domains of CD40 or the TNF-2 receptor. In EBV, immortalized B cells cross-linking in conjunction with membrane targeting of the carboxy-terminal signalling domain of LMP1 is sufficient for its biological activities. Thus, LMP1 acts like a constitutively activated receptor whose biological activities are ligand-independent.  相似文献   

13.
Monocytes/macrophages play a central role in mediating the effects of lipopolysaccharide (LPS) derived from gram-negative bacteria by the production of proinflammatory mediators. Recently, it was shown that the expression of cytokine genes for tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interferon-inducible protein-10 (IP-10) by murine macrophages in response to low concentrations of LPS is entirely CD14 dependent. In this report, we show that murine macrophages respond to low concentrations of LPS (相似文献   

14.
As a key receptor for lipopolysaccharide (LPS) on the surface of monocytes and macrophages, the CD14 molecule is primarily involved in non-specific host defense mechanisms against gram-negative bacteria. To delineate the structural basis of LPS binding, 23 mutants in the N-terminal 152 amino acids of human CD14 were generated and stably transfected into CHO cells. In each mutant, a block of five amino acids was substituted by alanine. Reactivity of the mutants with anti-CD14 mAbs, and their ability to interact with LPS and Escherichia coli were tested. 4 of 21 expressed CD14 mutants, ([Ala9-Ala13]CD14, [Ala39-Ala41, Ala43, Ala44]CD14, [Ala51-Ala55]CD14 and [Ala57, Ala59, Ala61-Ala63]CD14), are not recognized by anti-CD14 mAbs that interfere with the binding of LPS to human monocytes. However, only [Ala39-Ala41, Ala43, Ala44]CD14 is unable to react with fluorescein-isothiocyanate-labeled LPS or with FITC-labeled E. coli (055:B5). In addition, [Ala39-Ala4l, Ala43, Ala44]CD14 does not mediate LPS (E. coli 055:B5; 10 ng/ml)-induced translocation of nuclear factor kappaB in CHO-cell transfectants. The results indicate that the region between amino acids 39 and 44 forms an essential part of the LPS-binding site of human CD14.  相似文献   

15.
Host recognition and disposal of LPS, an important Gram-negative bacterial signal molecule, may involve intracellular processes. We have therefore analyzed the initial pathways by which LPS, a natural ligand of glycosylphosphatidylinositol (GPI)-anchored CD14 (CD14-GPI), enters CD14-expressing THP-1 cells and normal human monocytes. Exposure of the cells to hypertonic medium obliterated coated pits and blocked 125I-labeled transferrin internalization, but failed to inhibit CD14-mediated internalization of [3H]LPS monomers or aggregates. Immunogold electron microscope analysis found that CD14-bound LPS moved principally into noncoated structures (mostly tubular invaginations, intracellular tubules, and vacuoles), whereas relatively little moved into coated pits and vesicles. When studied using two-color laser confocal microscopy, internalized Texas Red-LPS and BODIPY-transferrin were found in different locations and failed to overlap completely even after extended incubation. In contrast, in THP-1 cells that expressed CD14 fused to the transmembrane and cytosolic domains of the low-density lipoprotein receptor, a much larger fraction of the cell-associated LPS moved into coated pits and colocalized with intracellular transferrin. These results suggest that CD14 (GPI)-dependent internalization of LPS occurs predominantly via noncoated plasma membrane invaginations that direct LPS into vesicles that are distinct from transferrin-containing early endosomes. A smaller fraction of the LPS enters via coated pits. Aggregation, which greatly increases LPS internalization, accelerates its entry into the nonclathrin-mediated pathway.  相似文献   

16.
Peptidoglycan (PGN) activates macrophages through membrane CD14 (an endotoxin receptor) and binds to both soluble and membrane CD14. Since soluble CD14-lipopolysaccharide (LPS) complexes activate CD14-negative endothelial and epithelial cells, this study tested whether soluble CD14-PGN complexes activate human umbilical vein endothelial cells and epithelial-like U373 cells to secrete interleukin (IL)-6, express vascular cellular adhesion molecule-1, and translocate nuclear factor-kappaB. In contrast to LPS, endothelial, epithelial, and other cells of non-hemopoietic origin were unresponsive to PGN through soluble or membrane-bound CD14, whereas cells of hemopoietic origin were responsive to both PGN and LPS. PGN, similarly to LPS, activated endothelial and epithelial cells indirectly in the presence of 2%-4% blood, by inducing secretion of both tumor necrosis factor-alpha and IL-1 from monocytes. These results reveal different mechanisms of CD14 function and cell activation for LPS and PGN and also demonstrate strong indirect activation of endothelial and epithelial cells by both PGN and LPS.  相似文献   

17.
CD14 is a pattern recognition receptor involved in the interaction with multiple ligands, including LPS from gram-negative bacteria and lipoarabinomannan (LAM) from mycobacteria. While the interactions between LPS and soluble CD14 (sCD14) have been analyzed in detail, LAM/CD14 interactions remain uncharacterized due to the lack of suitable functional assays. We describe herein a novel bioassay for the analysis of CD14/ligand interactions. CD14-negative myeloid HL-60 cells up-regulate endogenous CD14 gene expression when stimulated with LPS in the presence of recombinant soluble CD14(1-348). Using the HL-60 bioassay, we showed that sCD14(1-348) confers responsiveness not only to LPS, but also to LAM. The response to LAM, but not that to LPS, was highly dependent on LPS binding protein (LBP). The N-terminal half of CD14 was sufficient to mediate HL-60 responses to LAM, since HL-60 cells responded with similar efficiency when stimulated with LAM and LBP in the presence of sCD14(1-348) or sCD14(1-152). Thus, the N-terminal 152 amino acids of CD14 contain the site(s) involved in the interaction with LAM and LBP, as well as the residues required for LAM-dependent CD14 signaling.  相似文献   

18.
Previous studies have shown that the neutrophil-derived heparin-binding protein (HBP), also known as CAP37 or azurocidin, potentiates the LPS-induced release of proinflammatory cytokines (TNF-alpha, IL-1, and IL-6) from isolated human monocytes. To date, the mechanisms by which HBP enhances LPS-induced monocyte activation have not been elucidated, and it is not known whether HBP also increases the LPS-induced production of other bioactive substances. We studied human monocytes activated by recombinant human HBP and LPS and their interaction with the LPS receptor CD14. We hypothesized that the stimulatory effect of HBP on the LPS-induced release of proinflammatory mediators from monocytes was mediated by specific binding of HBP to monocytes, which resulted in an up-regulation of CD14. Our results demonstrated that HBP alone (10 microg/ml) stimulated the production of TNF-alpha from isolated monocytes. In addition, HBP had an additive effect on LPS-induced production of TNF-alpha and PGE2, suggesting a generalized monocyte activation. We used flow cytometry to demonstrate that HBP had a high affinity to monocytes but not to the LPS receptor CD14, and experiments performed at 4 degrees C indicated an energy-dependent step in this process. Confocal microscopy showed that monocytes internalize HBP within 30 min. These data suggest that mechanisms other than increased CD14 expression are responsible for the enhanced release of TNF-alpha or PGE2 in response to HBP and LPS.  相似文献   

19.
Lipopolysaccharide (LPS) is the principal stimulator of host defense against gram-negative bacteria. LPS-binding protein (LBP), bactericidal/permeability-increasing protein (BPI), and soluble CD14 (sCD14) bind LPS and regulate its toxicity. Lipoarabinomannan, a cell wall component of Mycobacterium tuberculosis, resembles LPS with respect to induction of inflammatory responses through recognition by LBP and sCD14. LBP, BPI, and sCD14 were measured in serum of 124 patients with tuberculosis in various stages of disease, in persons who had been in close contact with patients with contagious pulmonary tuberculosis, and in healthy controls. Levels of these LPS toxicity-regulating proteins were elevated in patients with active tuberculosis compared with those in contacts and controls and declined during treatment. The levels of LBP and sCD14 were higher in patients with fever and anorexia. LPS-regulating proteins may play a role in host defense during tuberculosis, presumably through interaction with lipoarabinomannan.  相似文献   

20.
The cell wall is a key inflammatory agent of gram-positive bacteria. Possible receptors mediating cell wall-induced inflammation include CD14 and platelet-activating factor (PAF) receptor. To delineate the conditions under which these various receptors might be used, human monocytic THP-1 cells and heparinized whole human blood were stimulated with lipopolysaccharide (LPS), intact Streptococcus pneumoniae bacteria, or purified pneumococcal cell wall. THP-1 culture supernatant or cell-free plasma was analyzed for the presence of tumor necrosis factor, interleukin-1beta (IL-1beta), and IL-6. For the cultured monocytes, anti-CD14 inhibited induction of the inflammatory cytokines by the cell wall and LPS but not by intact pneumococcal bacteria. Despite the difference in CD-14 usage, the intracellular pathways induced by the three agents demonstrated similarities, as revealed in the presence of specific signal transduction inhibitors such as cholera toxin, pertussis toxin, and genistein. Cytokine production in whole human blood indicated that anti-CD14 failed to block responses to cell wall and intact pneumococci, whereas while LPS-induced responses were inhibited. PAF receptor antagonist had no effect under any conditions in both assays. These results indicate that although cell walls bind to both CD14 and PAF receptor, only CD14 appears to engender a cytokine response under restricted conditions. Furthermore, host cell responses to intact pneumococci are consistently independent of CD14 and PAF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号