首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过几步大分子反应过程,将双齿席夫碱(SB)配基键合在聚苯乙烯(PS)侧链,制得了双齿席夫碱配基功能化的聚苯乙烯PS-SB。使大分子配体PS-SB与Eu(Ⅲ)离子螯合配位,制备了二元高分子-稀土发光配合物PS-(SB)3-Eu(Ⅲ),也以邻菲罗啉(Phen)为小分子第二配体,制备了三元高分子-稀土发光配合物PS-(SB)3-Eu(Ⅲ)-(Phen)1。研究结果表明,键合的双齿席夫碱(SB)配基兼具有螯合配位与传能敏化双重功能,所制备的高分子-稀土配合物均能发射出很强的Eu(Ⅲ)离子的特征荧光。大分子配体PSSB本身具有强的荧光发射,但与Eu(Ⅲ)离子配位后,其自身的荧光发射大为减弱,通过配合物分子内能量转移,可强烈地敏化Eu(Ⅲ)离子发光。  相似文献   

2.
利用不饱和二元羧酸3-己烯二酸(H2L)、1,10-邻菲咯啉(Phen)与稀土铕的氯化物EuCl3反应,合成了具有发光性能的稀土铕三元配合物Eu2L3Phen.4H2O。将铕配合物与聚甲基丙烯酸甲酯(PMMA)掺杂后,研究了掺杂型高分子材料的光致发光性能。研究结果表明,Eu配合物能发出很强的铕离子特征荧光,当配合物Eu2L3Phen.4H2O与聚甲基丙烯酸甲酯掺杂后,高分子材料仍能发出配合物Eu2L3Phen.4H2O的特征荧光,高分子材料的发光强度随着配合物在聚甲基丙烯酸甲酯中掺杂量的增加而增加。  相似文献   

3.
用新的合成方法合成了稀土配合物Eu(TTA) 3Phen。研究了该配合物的IR、UV、TGA、元素分析和荧光光谱。该配合物具有良好的发光性能和热稳定性。采用加热方法将Eu(TTA) 3Phen掺入PMMA树脂中 ,制成发光塑料树脂 ,并测定其发光性能。结果表明 ,Eu(TTA) 3Phen掺入PMMA树脂后仍保持该稀土配合物原有的发光特性 ,制成的Eu(TTA) 3Phen -PMMA树脂复合材料具有良好的发光性能 ,其发光强度与Eu(TTA) 3Phen掺入的含量有关。  相似文献   

4.
王明娟  高保娇  杜俊玫 《功能材料》2013,44(Z1):142-148
采用大分子反应法,将萘甲酸(NA)键合在聚砜(PSF)侧链,制得萘甲酸功能化的聚砜PSFNA。以PSFNA为大分子配基,以邻菲罗啉(Phen)为小分子配体,与Eu(Ⅲ)离子配位,分别制备了二元高分子-稀土发光配合物PSF-(NA)3-Eu(Ⅲ)与三元高分子-稀土发光配合物PSF-(NA)3-Eu(Ⅲ)-(Phen)1。采用红外光谱(FT-IR)和紫外吸收光谱(UV)对配合物进行了表征,对配合物的化学结构与发光性能的关系进行了深入研究,并应用Antenna效应理论,从微观机理上分析了实验结果。同时也制备了配合物的固体薄膜,考察了固体薄膜的荧光发射性能。研究结果表明,键合在PSFNA侧链的配基NA能有效地敏化Eu(Ⅲ)离子的荧光发射,大分子配基PSFNA与Eu(Ⅲ)离子所形成的二元或三元高分子-稀土配合物,均能发射出很强的Eu(Ⅲ)离子的特征荧光。但是,键合在PSFNA侧链的配基NA对Tb(Ⅲ)离子的荧光发射无敏化作用,还会发生由中心离子激发态到配基三线态的逆向能量转移。第二配体的协同配位效应使三元配合物的荧光发射强度高于二元配合物。  相似文献   

5.
铕(Ⅲ)-4-VP光致发光稀土配合物单体的制备   总被引:4,自引:1,他引:3  
以 4 乙烯基吡啶 (4VP)、邻菲洛啉 (Phen)为配体 ,与EuCl3 在乙醇溶液中一步合成了含有双键的三元稀土配合物 ,通过紫外光谱与荧光光谱的测定 ,研究稀土配合物光致发光的机理。结果表明 ,4 乙烯基吡啶通过吡啶环上的氮原子与稀土离子可直接配位 ;邻菲洛啉配体具有协同配位效应。稀土配合物较EuCl3 的荧光发射强度提高了 12倍之多。  相似文献   

6.
铕配合物的合成及其荧光防伪油墨的制备   总被引:3,自引:3,他引:0  
选用苯甲酸(BA)、噻吩甲酰三氟丙酮(TTA)、邻菲咯啉(Phen)作为配体合成了Eu(BA)3Phen三元配合物、Eu(BA)(TTA)2Phen四元配合物,将其作为荧光剂,制备了稀土荧光防伪油墨。红外光谱的分析表明配体与铕离子发生了配位。测定了配合物和荧光防伪油墨的荧光性能,发射波长为614 nm,制备的稀土荧光防伪油墨在可见光下印迹无色,在紫外灯下呈现明显红色荧光。  相似文献   

7.
以邻氨基苯甲酸(HL)为第一配体,邻菲啰啉(Phen)、三苯基氧膦(TPPO)为中性配体合成了3种铽配合物,测定了配合物的红外光谱,结果表明,邻氨基苯甲酸的氨基和羧基均与稀土离子发生配位,邻菲啰啉和三苯基氧膦也均与稀土离子配位;通过紫外光谱和荧光光谱对比研究了其发光性能,发光强度顺序为Tb(L)3(TPPO)2>Tb(L)3(H2O)2>Tb(L)3(Phen),通过量子化学计算出配体的最高已占分子轨道(HOMO)、最低未占分子轨道(LUMO)能级及单重态和三重态能级,对比分析了不同中性配体铽配合物的能量传递过程。  相似文献   

8.
利用“原住法”合成技术,在EA(双酚A环氧丙烯酸酯树脂)中,合成了稀土荧光配合物Eu(TTA)(AA)2Phen(TTA:噻吩甲酰基三氟丙酮;AA:丙烯酸;Phen:邻菲咯啉),利用红外光谱、紫外一可见光谱和荧光光谱对体系进行了表征。红外光谱的研究表明,配合物在EA体系中的特征吸收峰被基质树脂所掩盖,主要表现为基质树脂的特征吸收;紫外一可见光谱的研究表明,该体系在350nm附近出现配体TTA的强特征吸收,在低于300nm时,吸收峰被基质树脂掩盖;荧光光谱的研究表明,配合物在EA体系中能发出强的铕离子的特征荧光.并且低于铕质量分数为0.4%的范围内,荧光强度与稀土离子含量接近线性关系。  相似文献   

9.
彭丽  光善仪  徐洪耀 《功能材料》2020,(4):4013-4017
以罗丹明B酰肼、3-溴水杨醛为原料,通过活性氨基与醛基的缩合反应,制备了一种新型罗丹明B席夫碱化合物(RHBS)。该化合物作为配体与锌离子配位,可得到新的红光发光材料[RHBS-Zn(Ⅱ)];作为荧光探针,可实现锌离子高灵敏选择性。通过核磁共振氢谱、红外光谱、紫外光谱、荧光光谱对席夫碱配体RHBS及配合物[RHBS-Zn(Ⅱ)]进行了结构和性能的分析。结果分析表明:锌离子以1∶1的方式与配体RHBS上亚氨基的N原子、羰基中的O原子及酚基中的O原子配位,形成锌离子配合物[RHBS-Zn(Ⅱ)]。在556 nm光的激发下,配合物在587 nm处有明显的特征红色荧光产生,且配合物的发光荧光量子产率达15.1%。同时,在587 nm处,不受其它离子干扰,对Zn(Ⅱ)具有高的荧光探针选择性,是Zn(Ⅱ)很好的荧光探针检测材料。  相似文献   

10.
根据"分子设计"思想,把噁唑类基团良好的电子传输性能与β-二酮优良的螯合金属离子性能集中到同一分子中,合成了一种新型的含噁唑类β-二酮1-[4'-(5-(4-特丁基苯基)-1,3,4-噁唑-2-基)-联苯基-4-基]-4,4,4-三氟丁基-1,3-二酮(1-[4'-(5-(4-Tert-butylphenyl)-1,3,4-oxadiazole-2-y1)-biphenyl-4-y1]-4,4,4-trifluorobutane-1,3-diketone,TPBDTFA),以元素分析、1H-NMR谱确定了其组成;进而以TPBDTFA和邻菲罗啉(Phen)为配体,与EuCl3反应,合成了Eu(Ⅲ)的三元配合物.荧光分析结果表明配体本身是一种良好的蓝色发光材料;配合物中的有机配体能够有效地的把吸收的能量传递给中心Eu3+离子,强烈敏化Eu3+发光,它是一种高效的红色发光材料;配合物分子内含有具良好电子传输性能的噁唑基团,而且其热稳定性好,为制备相应的有机电致发光器件(OLED)提供了条件.  相似文献   

11.
以苯甲酸(BA)、邻氨基苯甲酸(o-Amino)、邻苯二甲酸(o-Phth)及水杨酸(Sal)4种芳香族羧酸为第一配体,以邻菲咯啉(Phen)为第二配体,通过溶液沉淀法合成了4种稀土铕(Ⅲ)三元有机配合物.通过元素分析、红外光谱、紫外吸收光谱分析等方法确定了它们的组成结构,用荧光光谱研究分析了4种配合物的光致发光荧光性能,初步探讨了不同第一配体对铕(Ⅲ)三元配合物荧光性质影响,并筛选出具有很好应用价值的红色高亮有机荧光材料.  相似文献   

12.
将3-氨丙基三乙氧基硅烷(APTES)与水杨醛在室温下合成有机配体,用于与稀土离子(Tb3+、Sm3+、Dy2+)配位,制得了3种稀土有机配合物.用"后合成法"将稀土配合物以共价键结合的方式连接到以硅基介孔块体为主体的材料上得到组装材料.通过红外光谱、元素分析、BET分析及荧光光谱分析对稀土配合物及其组装材料的组成、结构及性能进行了表征.结果表明,与纯配合物相比,在组装体材料中(Tb3+、Sm3+组装)有机配体的发射峰强度变弱,而稀土离子的特征发射峰强度变强.这表明在组装体材料中从有机配体到稀土离子的能量传递变得更加有效.  相似文献   

13.
稀土配合物/改性MCM-41杂化发光材料的合成研究   总被引:1,自引:0,他引:1  
采用水热法合成了改性MCM-41中孔分子筛;采用液相沉淀法合成了Eu(Phen)2(Pht)2Cl.H2O和Eu(Phen)2(Sal)(Pht)Cl.H2O两种稀土有机配合物。并将所制备的稀土有机配合物组装到改性MCM-41中,合成了稀土配合物(铕)/改性MCM-41杂化发光材料,采用小角XRD、红外光谱、荧光光谱和TEM、N2吸附-脱附对其结构和荧光性质进行了研究。结果表明,组装体具有MCM-41典型结构并且在组装之后仍保留了MCM-41的孔道结构;其荧光光谱具有Eu3+的特征荧光发射,发光强度大于纯配合物,更有利于实际应用。  相似文献   

14.
合成了5种新型镧掺杂铕的2,5-噻吩二羧酸(H2L)、1,10-菲咯啉(Phen)四元异核配合物,通过元素分析、TG-DTA、红外光谱法确定其组成为(EuxLay)2L3(Phen)2·4H2O(x∶y=0.90∶0.10、0.70∶0.30、0.50∶0.50、0.30∶0.70、0.10∶0.90),配体的羧基与稀土离子以螯合双齿配位。荧光光谱测试表明镧对铕的配合物有荧光浓聚效应。  相似文献   

15.
以十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,采用水热法制备了晶粒平均尺寸8nm纳米MCM-41;以稀土铕为中心,水杨酸为第一配体,邻菲罗啉为第二配体,合成了稀土配合物Eu(Sal)_3Phen。用浸渍法将Eu(Sal)_3Phen组装到MCM-41分子筛中成为Eu(Sal)_3Phen/MCM-41杂化发光材料。红外分析表明稀土配合物成功组装到MCM-41分子筛的孔道中,X射线衍射表明MCM-41的结晶性好,组装后MCM-41的晶面衍射峰强度稍减弱,扫描电镜表明产品为六方均匀有序结构。在365nm激发波长,发射波长为621nm,为典型红光,是(5D0-7F2)发射的结果,Eu3+掺量9%时发光强度达最大,稀土配合物组装后性能更加稳定,在浓度12%未发生浓度猝灭。  相似文献   

16.
利用2,2-联吡啶-6,6-二羧酸作为配体,合成了稀土配合物[Ln2(bpydc)3·3H2O]·H2O·3CH3OH(1,Ln=Eu,Tb,Yb,Gd;Hbpydc=2,2-联吡啶-6,6-二羧酸)。使用单晶X射线衍射仪、傅里叶红外光谱、紫外吸收光谱、荧光光谱以及磷光光谱等对其进行了表征和配体与发光中心的能级匹配程度的测定,探讨了配合物的荧光性能与能量传递效率。结果表明:配合物具有两种不同环境的配位中心,促使配合物在空间上具有层状堆积结构;Eu(Ⅲ)与Tb(Ⅲ)配合物分别在612与548nm处有强烈的红色与绿色荧光发射,特征荧光敏化效果明显;配体三重态能级26666cm-1与稀土离子Eu3+(5D0,17300cm-1)、Tb3+(5D4,20500cm-1)最低激发态能级匹配,存在明显天线效应,具有优良的能量传递效率。  相似文献   

17.
在EA基质中,合成了Eu(1-X)LnX(TTA)3Phen配合物(Ln=G d、Y和L a,TTA=噻吩甲酰三氟丙酮,Phen=1,10邻-菲咯啉,X=掺杂元素的摩尔分数)。红外光谱的分析表明,配合物的吸收峰被EA(EA=双酚A-环氧丙烯酸酯)基质掩盖,表现为EA的特征吸收;荧光激发光谱、荧光发射光谱的研究表明,在EA基质中Eu(1-X)LnX(TTA)3Phen配合物已经形成,并且表现出强的铕离子特征荧光。荧光体系经固化后的荧光强度明显低于固化前的荧光强度,并讨论了荧光猝灭机理。  相似文献   

18.
采用溶液浸润AAO模板法,将自制的荧光稀土配合物Eu(aspirin)3 Phen掺杂到聚氯乙烯(PVC)溶液中,制备了有荧光特性的一维复合纳米线阵列。并采用扫描电镜(SEM)、能谱分析(EDS)及透射电镜(TEM)进行了结构分析,结果表明:掺杂稀土铕配合物的聚氯乙烯制备了规整的纳米线阵列,铕配合物存在于纳米线阵列中。此外,荧光发射光谱研究表明,复合纳米线阵列具有优并的发光性能,归因于稀土配合物在纳米阵列中能更好地分散。  相似文献   

19.
合成了以苯甲酰丙酮为第一配体,1,10-邻菲哆啉为第二配体的一种铽的三元配合物Tb(BAC)3Phen,通过元素分析确定了其组成,并用红外吸收光谱、紫外。可见光吸收光谱、差热-热重曲线、原子力显微镜对其进行了表征,同时研究了Tb(BAC)3Phen的光致发光性能。实验结果表明配体苯甲酰丙酮和1,10-邻菲哆啉能够较好地敏化中心离子Tb^3-发光,Tb(BAC)3Phen的最大发射波长为615nm,并具有良好的热稳定性和成膜性,是一种黄白光发光材料。  相似文献   

20.
以硼砂和氯化钙为原料,主要采用化学共沉淀法成功合成了稀土离子Eu3+、Tb3+掺杂的硼酸钙发光材料。通过X射线衍射、荧光光谱对样品物相和发光性能进行了表征。探究了不同的实验条件(即不同煅烧温度、稀土离子浓度)对其发光性能的影响,样品的激发光谱表明,在800℃时,CaB2O4∶Tb3+的发光能力最强;掺杂稀土Tb3+离子的发光材料在5%时发光性能最强。在221nm紫外光激发下,样品在612nm和543nm处有Eu3+和Tb3+离子明显的特征发射峰,而且掺杂Eu3+离子的发光材料的发光性能随着Eu3+浓度的增加而增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号